Dynamic Time Warping Averaging of Time Series allows Faster and more Accurate Classification

F. Petitjean

G. Forestier

G.I. Webb

A.E. Nicholson

Y. Chen

E. Keogh

The Ubiquity of Time Series

an de la serie de la presentación de la presentación de la serie de la serie de la presentación de l

Slightly Surprising Facts

- 1. The *Nearest Neighbor algorithm* is virtually always most accurate for time series classification.
- 2. Dynamic Time Warping (DTW) is the most accurate measure for time series across a huge variety of domains.

This is not a place to discuss *why* this is true (see [a,b,c]), but this is the strong consensus of the community, supported by large-scale reproducible experiments.

[[]a] A. Bagnall and J. Lines, "An experimental evaluation of nearest neighbour time series classification. technical report #CMP-C14-01," Department of Computing Sciences, University of East Anglia, Tech. Rep., 2014.

[[]b] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana, "Fast time series classification using numerosity reduction," in *Int. Conf. on Machine Learning*, 2006, pp. 1033–1040.

[[]c] X. Wang, A. Mueen, H. Ding, G.Trajcevski, P. Scheuermann, E. Keogh: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Discov. 26(2): 275-309 (2013)

DTW works well even if the two time series are not well aligned in the time axis.

Case Study: Classifying Flying Insects

- Insects kill about a million people each year
- Insects destroy tens of billions of dollars' worth of food each year

Phototransistor

• To mitigate insect damage we must determine which sex/species are present.

- The "audio" of insect flight can be converted to an amplitude spectrum, which is essentially a time series.
- As the dendrogram hints at, this does seem to capture some class specific information...

- If we are going to put devices into the field, there are going to be resource constraints.
- One solution is to average our large training dataset into a small number of prototypes.
- This:
 - Will speed up NN classification
 - May be more accurate, since averaging can produce prototypes that capture the essence of the set

Our idea for a fast and accurate classification system:

The issue is then:

> How to average time series consistently with DTW?

What is the mean of a set? Averaging is the tool that makes it possible to define a prototype informing about the central tendency of a set in its space.

Mathematically, the mean \bar{o} of a set of objects O embedded in a space induced by a distance d is:

$$\arg\min_{\bar{o}}\sum_{o\in O}d^2(\bar{o},o)$$

The mean of a set minimizes the sum of the squared distances.

This is **not surprising**, because the arithmetic mean does not take **warping** into account!

State of the art in averaging for DTW

Main idea exploited [a][b][c][d] and more:

We know how to exactly compute the average of 2 sequences...

...so we can build the average pairwise.

But, this only works if the operator is associative... ...which is *not* the case for DTW pairwise average.

[a] L. Gupta, D. L. Molfese, R. Tammana, and P. G. Simos, "Nonlinear alignment and averaging for estimating the evoked potential," *IEEE Transactions on Biomedical Engineering*, vol. 43, no. 4, pp. 348–356, 1996.

[b] V. Niennattrakul and C. A. Ratanamahatana, "On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time Warping," IEEE International Conference on Multimedia and Ubiquitous Engineering, pp.733-738, 2007.

[c] S. Ongwattanakul and D. Srisai, "Contrast enhanced dynamic time warping distance for time series shape averaging classification," in *Int. Conf. on Interaction Sciences: Information Technology, Culture and Human,* ACM, 2009, pp. 976–981.

[d] V. Niennattrakul and C. A. Ratanamahatana, "Shape averaging under time warping," in *Int. Conf. on Electrical Engineering/Electronics*, *Computer, Telecommunications and Information Technology*, IEEE, vol. 2, 2009, pp. 626–629.

Pairwise averaging is not good enough:

- 1. Even the medoid sequence often provides a better solution than state-of-the-art methods [a]
- 2. Using k-means, centers often "drift out" of the cluster [b]

We are seeking a solution that would not rely on associativity

>No pairwise methods

[a] F. Petitjean and P. Gançarski, "Summarizing a set of time series by averaging: From Steiner sequence to compact multiple alignment," *Theoretical Computer Science*, 2012.

[b] V. Niennattrakul and C. A. Ratanamahatana, "Inaccuracies of Shape Averaging Method Using Dynamic Time Warping for Time Series Data," International Conference on Computational Science, 2007.

Back to the source

- DTW is the extension of the edit distance to sequences of numerical values (time series).
- Finding a "consensus" sequence is a very close problem to the one of defining an average sequence for DTW (same objective function).
- Having the multiple alignment (≈ simultaneous alignment) of a set of sequences.

 \Rightarrow consensus sequence computable "column by column"

----D-PGDF--DRNVPRICGVCGDRATGFHFNAMTCEGCKGFFRRSMKRKA--LFTCP-FNGDCRITKDNRRHCQACRLKRCVDIGMMKEFILTD IRPQKRK-KGPAP-KMLGNELCSVCGDKASGFHYNVLSCEGCKGFFRRSVIKGA--HYICH-SGGHCPMDTYMRRKCQECRLRKCRQAGMREECVLSE SVPGKPS-VNADE-EVGGPQICRVCGDKATGYHFNVMTCEGCKGFFRRSVIKGA--HYICH-SGGHCPMDTYMRRKCQCQACRLRKCLESGMKKEMIMSD EPERKRK-KGPAP-KMLGHELCRVCGDKASGFHYNVLSCEGCKGFFRRSVVRGGARRYACR-GGGTCQMDAFMRRKCQQCRLRKCKEAGMREQCVLSE PVTKKPRMGASAG-RIKGDELCVVCGDRASGYHYNALTCEGCKGFFRRSITKNA--VYKCK-NGGNCVMDMYMRRKCQECRLRKCKEAGMREQCVLSE QTEEKKC-KGYIPSYLDKDELCVVCGDKATGYHYRCITCEGCKGFFRRSIQKNLHPSYSCK-YEGKCVIDKVTRNQCQECRFKKCIYVGMATDLVLDD ----SPS-PPPPP---RVYKPCFVCNDKSSGYHYGVSSCEGCKGFFRRSIQKNM--VYTCH-RDKNCIINKVTRNRCQYCRLQKCFEVGMSKEAVRND ----PPS-PLPPP---RVYKPCFVCQDKSSGYHYGVSACEGCKGFFRRSIQKNM--VYTCH-RDKNCIINKVTRNRCQYCRLQKCFEVGMSKESVRND

Multiple alignment, consensus sequence and average time series

Multiple alignment example									
$A = \langle a, c, a, a, b \rangle$	A			a			a		
$B = \langle a, a, c, a, a \rangle$ $C = \langle a, a, a, c, a \rangle$	$B \\ C$	a a		a a		a a	a a	$egin{array}{c} a \ a \end{array}$	
	M	a	a	a	c	a	a	a	

Same result for time series										
$A = \langle 1, 10, 0, 0, 4 \rangle \\ B = \langle 0, 2, 10, 0, 0 \rangle \\ C = \langle 0, 0, 0, 10, 0 \rangle$	$\begin{array}{c} A\\ B\\ C\end{array}$		0			0	0 0 0	0		
	M	$\frac{1}{3}$	$\frac{1}{3}$	1	10	0	0	$\frac{4}{3}$		

But, finding the optimal multiple alignment:

- 1. Is **NP-complete** [a]
- 2. Requires $O(L^N)$ operations
 - L is the length of the sequences (≈ 100)
 - N is the number of sequences (\approx 1,000)

$\gg 10^{85}$

#particles in the
observable universe

\Rightarrow Efficient solutions will be heuristic

In 2011, we introduced DBA [a]:

- Takes inspiration from works in computational biology
- Is specifically designed for time series and DTW
- Does not function pairwise
- Does not use any order on the dataset it averages

[a] F. Petitjean, A. Ketterlin and P. Gançarski, "A global averaging method for dynamic time warping, with applications to clustering," *Pattern Recognition*, vol. 44, no. 3, pp. 678–693, 2011.

We have shown that (see the paper and [a]): 1. DBA outperforms **all** state-of-the-art methods

2. DBA improves on the optimization problem by **30%**

- 3. DBA converges between iterations
- 4. No centers "drifting out" of the cluster

[a] F. Petitjean, A. Ketterlin and P. Gançarski, "A global averaging method for dynamic time warping, with applications to clustering," *Pattern Recognition*, vol. 44, no. 3, pp. 678–693, 2011.

Experiments

Objective: Making 1NN with DTW faster

Mean: Condensing the "train" dataset with DBA

2 average-based techniques

- 1. K-means
- 2. AHC
- ... both using DBA

6 competitors

- 1. Random selection
- 2. Drop 1
- 3. Drop 2
- 4. Drop 3
- 5. Simple Rank
- 6. K-medoids

What about other datasets?

What about other datasets?

25

What about other datasets?

All results on 40+ datasets are online!

http://www.francois-petitjean.com/Research/ICDM2014-DTW

All results on 40+ datasets are online!

http://www.francois-petitjean.com/Research/ICDM2014-DTW

[a] J. Demšar, "Statistical comparisons of classifiers over multiple data sets," *The Journal of Machine Learning Research*, vol. 7, pp. 1–30, 2006.

Take-home message

Almost everything was in the title!

- 1. DBA computes the average time series for DTW
- 2. Averaging can make time series classification:
 - 1. Faster
 - 2. More accurate
- 3. We believe in reproducible research:
 - 1. We tested our approach on 40+ datasets from the UCR archive
 - 2. We computed the statistical significance of the results
 - 3. The source code is online

Web: http://www.francois-petitjean.com/Research/ICDM2014-DTW
E-mail: francois.petitjean@monash.edu
Twitter: @LeDataMiner

Thanks! Please come and have a chat!

