
Scaling log-linear analysis to datasets with thousands of variables
François Petitjean Geoffrey I. Webb

Faculty of IT, Monash University, Melbourne, Australia – firstname.lastname@monash.edu

Abstract
Association discovery is a fundamental data mining task.
The primary statistical approach to association discovery be-
tween variables is log-linear analysis. Classical approaches to
log-linear analysis do not scale beyond about ten variables.
We have recently shown that, if we ensure that the graph
supporting the log-linear model is chordal, log-linear anal-
ysis can be applied to datasets with hundreds of variables
without sacrificing the statistical soundness [21]. However,
further scalability remained limited, because state-of-the-art
techniques have to examine every edge at every step of the
search. This paper makes the following contributions: 1) we
prove that only a very small subset of edges has to be con-
sidered at each step of the search; 2) we demonstrate how
to efficiently find this subset of edges and 3) we show how
to efficiently keep track of the best edges to be subsequently
added to the initial model. Our experiments, carried out on
real datasets with up to 2000 variables, show that our con-
tributions make it possible to gain about 4 orders of magni-
tude, making log-linear analysis of datasets with thousands
of variables possible in seconds instead of days.
Keywords: Association discovery, statistical testing, high-
dimensional data, chordal graphs

1 Introduction
Log-linear analysis (LLA) is the well established statis-
tical technique for finding associations between discrete
variables in data [11]. The general objective of LLA is to
select a model that satisfactorily explains the observed
frequencies of a given categorical dataset (i.e., a model
of the joint distribution). A general algorithm of LLA’s
forward selection process is given in Algorithm 1 of the
supplementary file available at [19].

General approaches to LLA are exponential with re-
spect to the number of variables, which make them im-
practical for datasets with more than a dozen variables
[5, 21]. This is because the evaluation of the trade-off
between the complexity of the model and its quality of
fit to the data requires consideration of all the possible
outcomes [5], i.e., 2M outcomes for M binary variables.

Recently, we have shown that this evaluation can
be performed for high-dimensional data, and without
approximation, if the model belongs to the class of mul-
tiplicative log-linear models [21, 20]. This corresponds

Figure 1: Study of the number of evaluations that are
performed by state-of-the-art techniques (top), com-
pared to the actual required number (bottom).
to the Markov random fields for which the supporting
graph is chordal [11].

Although this discovery made it possible to per-
form LLA for datasets with hundred variables, tackling
datasets with 1000+ variables is still out-of-reach, be-
cause of the general quadratic complexity of every step
of LLA. At every step of the process, every possible edge
has to be considered for addition to the current reference
model M?, and the number of possible edges is in the
order of O(M2). For example, performing LLA with the
state-of-the-art for high-dimensional data – Chordalysis
[21] – requires more than 3 days of computation for a
dataset with 700 variables (see our experiment on the
Protein dataset in Section 5).

This paper is based on the idea that, at every step,
it is only necessary to re-consider a subset of
edges for addition to the successively refined models.

Let us motivate this idea with another real-world
dataset representing 30,000 news articles described by
500 variables (see the description of dataset ABC News
in Section 5 for more details). On the one hand, we
recorded how many edges are examined by the LLA pro-
cess. We report this number over the course of the LLA
process in the top curve in Figure 1: the process exam-
ines the addition of more than 10,000,000 edges. On the
other hand, we looked at how many edges actually lead
to the same evaluation of the model between successive
steps of LLA. We report the difference – i.e., the num-
ber of times that edges need to be re-examined after the

very first step – in the bottom curve of Figure 1: only
about 10,000 edges’ additions require re-examination.1
This means that the vast majority of the computation
could be avoided if we knew which edges would lead to
the same evaluation of the model. This is, quite simply,
the aim of the paper: showing how to exactly predict
that an edge will need to be re-examined, and design-
ing an algorithm that utilizes that knowledge to perform
LLA several orders of magnitude faster than the current
state-of-the-art methods.

Our experiments on real-world datasets with up
to 2000 variables show that our algorithm, Prioritized
Chordalysis, performs LLA about 4 orders of magnitude
faster than state-of-the-art techniques, without making
any additional assumption. Prioritized Chordalysis will
is available open-source at http://sourceforge.net/
p/chordalysis/.

This paper is organized as follows. In Section 2,
we formalize the problem. In Section 3, we present
our solution Prioritized Chordalysis, which enables the
discovery of statistically sound multi-way correlations
between the variables of datasets with thousands of
variables. In section 4, we place this work in the
context of related research. In Section 5, we conduct
experiments that demonstrate the performance and
relevance of our approach. Finally, we conclude this
work in Section 6.

2 Definitions and problem statement
2.1 Log-linear models and log-linear analysis
Let D be a dataset of N samples over a set of M
discrete variables V = {V1, · · · , VM}. Every variable V
takes values in Dom(V). D is drawn from a probability
distribution pV over V.

Log-linear models use a first-degree polynomial
function to model the logarithm of the frequencies that
can be observed in a contingency table.

Log-linear analysis (LLA) is the general name
given to methods that seek to select a statistically sig-
nificant log-linear model from data. This corresponds to
determining which of the u terms have to be part of the
model. LLA classically uses hypothesis testing to decide
if the current reference model (the null hypothesis) has
to be replaced by a candidate model that is a variation
of the reference model (the tested hypothesis). Statis-
tical methods iteratively refine an initial model, for as
long as the addition of terms results in a statistically
significant improvement in the model’s fit.

Replacing a current reference model M? by a
candidate modelMc thus requires to assess a trade-off

1Note that the remainder of this manuscript will make it clear
how this graph can be generated.

between quality and complexity, because:
• Mc is always going to fit the data better thanM?,

because the two models are nested andMc includes
an additional terms;

• Mc is always going to be more complex thanM?,
for the same reason.

Broadly speaking, the aim of the evaluation function
(evaluate_replacement in Algorithm 1 of the supple-
mentary file available at [19]) is to assess if the improve-
ment in the quality of the model is significant enough
to “justify” the increase in the complexity.

Let us now formalize this evaluation; we use OA
x

(resp. EA
x) to designate the observed (resp. expected

from a model M) frequencies for the configuration x
with respect to the set of variables A. The improve-
ment of the fit to the data of Mc compared to M? is
estimated using the standard in statistics – the likeli-
hood ratio test statistic [5, p. 97]:

G2
r = G2(M? vs. Mc) = G2(M?)−G2(Mc)

with G2(M) = 2 ·
∑
x∈V

OV
x · ln

(
OV

x /EV
x

)
Similarly, the difference in the complexity between the
models is evaluated as the difference in the number of
degrees of freedom dfr = df(M?)− df(Mc) [5, p. 97].

The replacement ofM? byMc is then rejected with
a significance level α if

G2
r > χ2(1− α, dfr)(2.1)

⇔ 1−
∫ G2

r

x=0
χ2(x, dfr)dx > α(2.2)

The left term in Equation 2.2 is the p-value for the
replacement ofM? byMc.

2.2 LLA for high-dimensional data Statistical
methods for LLA do not scale up beyond a dozen vari-
ables for the general class of log-linear models. This is
because computing G2, to evaluate the replacement of
M?, is exponential in the number of variables. This as-
sessment indeed implies iteration over all possible com-
binations of values for all the variables. This assessment
is clearly infeasible when the number of variables is high
(e.g., for 300 binary variables only, a single evaluation
would require more operations than there are funda-
mental particles in the observable universe).

We have recently shown that the full LLA paradigm
can still be used to analyze high-dimensional data if we
focus on the subclass of log-linear models that are de-
composable (or multiplicative) [21]. To the best of our
knowledge, this is the only subclass of models for which
the full statistical LLA paradigm (as described in Sec-
tion 2.1) can apply, because decomposable models are

http://sourceforge.net/p/chordalysis/
http://sourceforge.net/p/chordalysis/

the only log-linear models with closed-form maximum
likelihood estimates [11].

In addition, decomposable models are not only
practical but also a useful class of models. This is
ensured by the fact that, for any non-decomposable
log-linear model, there always exists a decomposable
model that subsumes it and can hence exactly model
any distribution that it models [21].

Definition 1. [5] A log-linear model is graphical if,
whenever the model contains all two-factor terms gen-
erated by a higher-order interaction, the model also con-
tains the higher-order interaction.

Property 2.1. Being completely determined by its
two-factor terms, graphical models can be represented
by an undirected graph, where the vertices represent the
variables and the edges represent the two-factor terms
of the model.Note that graphical log-linear models are
equivalent to Markov networks.

Definition 2. A graphical log-linear model is decom-
posable if the supporting graph is chordal, i.e., if the
graph does not admit chord-less cycles of length strictly
greater than three.

Property 2.2. Decomposable models are the only log-
linear models that have closed-form maximum likelihood
estimates (MLEs) [11]. Let M be a decomposable log-
linear model with associated chordal graph G = (V, E),
its maximum likelihood estimates follow:

(2.3) p̂M(x) =
∏

C∈C p̂C(x)∏
S∈S p̂S(x)

where C (resp. S) are the maximal cliques (resp. min-
imal separators) of G, and p̂A represents the marginal
probability of p̂V over a set of variables A.

2.3 Why cannot current approaches tackle
datasets with 1000+ of variables? As we have in-
tuited in the introduction to this paper, the critical is-
sue to scaling up LLA to datasets with thousands of
variables lies in the number of times that every edge is
examined for addition to the current reference model.
This paper will show that only a very limited number
of edges need to be re-examined at each step. Let us
first motivate this intuition with a few examples; the
remainder of this paper will demonstrate their validity.

Intuition 1: disconnected components. Con-
sider the model of a joint distribution over four variables
(age – a, height – h, gender – g and cholesterol – c) illus-
trated in Figure 2(a). Starting with a model considering
that the 4 variables are independent, the first step con-
sists of finding which one of the 6 edges will result in

age

height

cholesterol

gender
Step 1

(a)

age

height

cholesterol

gender
Step 1 Step 2

(b)

a b

c

d

e

f

g

h

i

1

2
3

4

5

6

78

9
10

11

12

(c)
Figure 2: Illustrative cases where edges need not be re-
evaluated between subsequent steps of LLA.
the most statistically significant model. To this end,
the addition of every single edge is evaluated. Let us
assume that this model is the one including edge {a, h},
i.e., including the correlation between age and height.
The second step is then going to assess the addition of
every single edge again. The p-value (see Equation 2.2)
associated with the addition of edge {g, c} is identical,
regardless of it being added at the first or second step,
because associated variables are not in the same con-
nected components of the graph, and hence not “inter-
acting” in the model; cholesterol and gender are inde-
pendent of age and height (c, g ⊥⊥ a, h). As a result, this
edge need not be evaluated again at the second step.

Intuition 2: empty minimal separator. Con-
sider the model in Figure 2(b) that results from includ-
ing the interaction {h, g} at step 2. The third step is
then going to examine the addition of every remain-
ing edge again. The p-value associated with the ad-
dition of edge {g, c} is identical, regardless of it being
added at the first, second or third step, because adding
{g, c} will “explain” the same quantity of information in
all three models; cholesterol is independent of age and
height given gender (c ⊥⊥ a, h | g). We will see that this
is due to an empty minimal separator between g and
c: Sgc = ∅, i.e., there is no vertex to remove from the
graph to disconnect g from c. As a result, this edge need
not be evaluated again at the second and third step.

Intuition 3: identical minimal separator.
Consider the more elaborate model over 9 variables il-
lustrated in Figure 2(c), where the numbers on the edges
indicate the steps at which they were added. We show
that from step 3, the addition of edge {f, g} to any suc-
cessively refined model need not be evaluated again and
that the significance of adding {f, g} will remain invari-
ant. This is motivated by the fact that, from step 3
on-wards, removing the vertex e disconnects f from g

(Sfg = {e}), leading to f, g ⊥⊥ a, b, c, d, h, i | e. In con-
sequence, the last time that the addition of this edge
needs to be evaluated is at step 3.

The next section will prove the validity of these
intuitions. It is interesting to observe that being able
to tell if an edge has to be re-evaluated is not sufficient,
because the LLA process will still enumerate over all the
edges at every step. This enumeration prevents LLA
from scaling to datasets with thousands of variables,
because there are O(M2) such edges for M variables.
We will show that Prioritized Chordalysis can precisely
identify the edges that have to be re-evaluated, and
use this information to maintain a data structure that
makes it possible avoid such enumeration.

3 Method – Prioritized Chordalysis
In this section, we introduce our method: Prioritized
Chordalysis. We first lay its theoretical foundations by
characterizing when an edge need or need not be re-
examined between two steps of the LLA process. Then,
we show how to use an advanced graph data structure
– the clique-graph – to track the edges that require
re-examination. We then show how to use a priority
queue to iterate over the best modifications of the
current reference model, in place of enumerating over
all possible edges. Finally, we examine the complexity
of our process and compare it to the state of the art.

3.1 What edges require re-examination? We
have seen in Section 2.1 that computing the statisti-
cal significance (p-value) of replacing a current reference
model M? by a candidate model Mc requires two ele-
ments: the difference in the fit G2

r and the difference in
the complexity dfr. We now develop these elements for
our target class of models, i.e., decomposable models.

Definition 3. [9, Definition 1] Let G = {V,E} be an
undirected graph and two vertices a, b ∈ V . The set
of vertices S ⊂ V is an (a, b)-separator if removing
S from G separates the vertices a and b into different
connected components. If no proper subset of S is an
(a, b)-separator, then S is a minimal (a, b)-separator,
noted Sab.

We have moreover recently shown that:

Theorem 3.1. [21, Theorem 1] If two decomposable
modelsMc ⊂M? differ only in one edge {a, b}, then:

G2
r = 2 ·N

(
H(Sab ∪ {a}) + H(Sab ∪ {b})

−H (Sab ∪ {a, b})−H(Sab)
)

(3.4)

where H(.) denotes the entropy.

Similarly for the assessment of the complexity, using
Equation 2.3 and [5, Equation 10, pp. 97–98] we have:

dfr = param (Sab ∪ {a, b}) + param(Sab)
−param(Sab ∪ {a}) − param(Sab ∪ {b})(3.5)

where param(A) = −1+
∏

v∈A |Dom(v)| and |Dom(v)|
the number of possible values for variable v.

As a result, the evaluation of the replacement of
M? by Mc is a function of only four elements: the
two vertices a and b that are newly linked in Mc, the
minimal separator Sab of those vertices in G?, and the
datasetD for the computation of the marginal entropies.
We can thus formulate the following theorem:

Theorem 3.2. LetM?
1 andM?

2 be two reference mod-
els selected at different steps of LLA, G?

1 = {V, E?
1} and

G?
2 = {V, E?

2} their associated graphs, and a, b two ver-
tices such that a, b ∈ V, {a, b} /∈ E?

1 , E
?
2 (i.e., there is no

edge between a and b in either models) and G?
1 ∪ {a, b}

and G?
2 ∪ {a, b} are both chordal graphs (i.e., adding

{a, b} to either graphs keep them chordal). If S is a
minimal (a, b)-separator in G1 and G2 (S?1

ab = S?2
ab), then

the p-value associated with the addition of {a, b} toM?
1

is identical to the p-value associated with the addition
of {a, b} toM?

2.

Proof. LetMcab
1 (resp. Mcab

2) be the candidate model
considering the addition of edge (a, b) to M?

1 (resp.
M?

2). If S = S?1
ab = S?2

ab , then Equations 3.4 and
3.5 directly give G2(M?

1 vs. Mcab
1 = G2(M?

2 vs. Mcab
2)

and df(M?
1 vs. Mcab

1) = df(M?
2 vs. Mcab

2). �
A direct consequence of this theorem is that the

p-value associated with the addition of an edge only
has to be re-evaluated between two steps of LLA if
its minimal separator changes between these steps.
The possible gain in computation then depends upon
how frequently do minimal separators actually change
between successive steps. This obviously depends on the
underlying structure of the dataset. We can however
bound the maximum number of edges that will change
between two steps of the LLA process.

Theorem 3.3. The number of edges that need to be re-
examined after adding edge (a, b) to the current refer-
ence model is at most 2(M −1)−|N(a)|− |N(b)|, where
N(x) designates the neighbours of x, i.e., only O(M)
edges require re-examination at every step.

Proof. Adding (a, b) to a chordal graph results in the
addition of only one maximal clique: Cab = Sab ∪ a ∪ b
[7, Section 3.2.1]. Any new edge added to the clique-
graph has Cab as one of its endpoints [7, Theorem 4.3]
(note that we use the term “clique-graph” as defined in
[9]). It results that any edge impacted by the addition

of (a, b) has either the form (a, x) or (b, x) [7, Proof to
Theorem 4.3]. Given that a can at most be connected
to M − 1 vertices and that it is already connected to
|N(a)| of them, there are at most M − 1− |N(a)| edges
of the form (a, x). Similar reasoning for b. �

This fundamental result establishes that, in the
worst case scenario, only O(M) edges have to be re-
examined at each step. This strongly contrasts with the
state-of-the-art techniques that require examination of
all O(M2) possible edges.

3.2 How to select all edges that need to be re-
examined? We have shown in the last subsection that
an edge needs to be re-examined between two steps of
LLA if and only if the associated minimal separator
has changed between these two steps. The naive way
to select all the edges that need to be re-examined at
every new step would then be to iterate over all edges
(a, b) and select those for which the minimal separator
has changed. However, we have seen that iterating over
all possible edges at every step of LLA is precisely the
limiting factor to scale up to datasets with thousands of
variables. Furthermore, even this naive selection would
require prohibitive calculations, because finding all Sab

itself requires O(|V|+ |E|) operations for chordal graphs
[14].

In this sub-section, we show how both these prob-
lems can be solved using an advanced graph-theoretical
data structure – the clique-graph [9]:
1. We demonstrate that, for all edges (a, b) that

are considered for addition to successive reference
modelsM?, their minimal (a, b)-separators can be
efficiently derived from the clique-graph.

2. We take an existing algorithm that aims at main-
taining the clique-graph data structure when itera-
tively adding edges to the supporting graph [7], and
show how to modify it to keep track of all minimal
(a, b)-separators.

3.2.1 Minimal vertex separators align with
edges of the clique-graph The clique-graph struc-
ture is an ideal base-structure for our task of keeping
track of all minimal separators between the vertices.

Definition 4. [9, Definition 2] Let G be a chordal
graph. The clique-graph C(G) = {Vc, Ec} is defined by:
• Vc is the set of maximal cliques of G
• (C1, C2) belongs to Ec iff C1 ∩ C2 is a minimal

(a, b)-separator for each a ∈ C1\C2 and each b ∈
C2\C1.

We now formulate the theorem that is the base for
tracking the minimal separators.

a

b

c

d

e

(a)

abc

bcd

cde

(b)
Figure 3: Example of chordal graph (a) and its associ-
ated clique-graph (b). Note that edge (abc, cde) is not
part of the clique-graph because removing abc∩ cde = c
does not disconnect a from e.
Theorem 3.4. If (a, b) can be added to a chordal graph
G while maintaining its chordality, then Sab = Ca ∩ Cb

where (Ca, Cb) ∈ Ec, a ∈ Ca and b ∈ Cb.
Proof. If adding (a, b) maintains the chordality of G,
then ∃(Ca, Cb) in C(G) such as a ∈ Ca and b ∈ Cb [7,
Lemma 3.1]. By Definition 4, if (Ca, Cb) ∈ Ec, then
Ca ∩ Cb is a minimal (a, b)-separator. �

3.2.2 Efficiently tracking all minimal separa-
tors We have demonstrated in Theorem 3.4 that for
all edges (a, b), the minimal (a, b)-separator Sab can be
obtained from edges (Ca, Cb) of the clique-graph, such
as a ∈ Ca and b ∈ Cb. A naive way of keeping track
of all the minimal separators could thus be to iterate
over the edges (C1, C2) of the clique-graph, and for
each one of them, to iterate over all pairs of vertices
(x, y), x ∈ C1\C1 ∩ C2, y ∈ C2\C1 ∩ C2 and memorize
that Sxy = C1 ∩ C2. This would however lead to a
vast amount of unnecessary computations, because most
of the structure of the clique-graph remains unchanged
when adding an edge to the associated (normal) graph.

We here refine the state-of-the-art algorithm for
the iterative update of clique-graphs [7] in order to
keep track of all minimal vertex separators. Note that
we only detail the modified parts of [7]’s algorithm.2
The theoretical contribution of this part of the paper
concerns Ef

M – a boolean (M × M)-matrix informing
about the eligibility of any edge for addition to the
current graph – and its iterative update:
1. We make Ef

M a function that associates to any
pair of vertices (a, b), its eligibility, its minimal
separator Sab and the clique-graph edge (Ca, Cb) ∈
Ec such that a ∈ Ca, b ∈ Cb and Ca ∩ Cb = Sab,
i.e., two nodes of the clique-graph allowing a to be
connected to b in G.

2. Following our Theorem 3.4, every time a new edge
(C ′, Cab) is added to the clique-graph as a result
of adding (a, b), we set Ef

M(x, a) to (true, C ′ ∩
Cab, C

′, Cab) for all (x, a) such as x ∈ C ′\Cab,
a ∈ Cab\C ′. Similarly for b.

2The reader can refer to the original paper and to our
implementation available at [19] for more details.

3. Every time an edge (C1, C2) is deleted from C(G) as
a result of adding (a, b) to G, and noting that such
(C1, C2) will follow C1 ∩C2 = Sab, we set Ef

M(x, a)
to (false,_,_,_) for all pairs (x, y) such that x
(resp. y) is in the same connected component as a
(resp. b) in G − Sab.
In addition, note that the scientific community has

challenged the correctness of [7]’s algorithm, in partic-
ular for the case where G is made of several connected
components [2], which leads to empty minimal sepa-
rators. We attribute this to a few unfortunate typos
present in [7], to the use of an imprecise vocabulary,3
and to the absence of any available implementation of
the algorithm. We have clarified, corrected and ex-
tended [7]’s algorithm. Our algorithm can easily been
reversed back to the original algorithm by only consid-
ering the boolean values in Ef

M(x, a). Note that the va-
lidity of our implementation has been carefully checked
and tested over hundreds of experiments, where we ver-
ified that it led to the same results as algorithms which
do not make use of the clique-graph [4].

3.3 Efficiently iterating over the best edges
This subsection describes the last component of our
algorithm: how to prevent enumeration over all possible
edges at every step.

At every step, the standard LLA framework con-
siders all the possible modifications of the current refer-
ence model [5, Chapter 6]. This requires iteration over
all O(M2) possible edges, which is the limiting factor to
perform LLA for datasets with thousands of variables.
As there are at most

(
M
2
)
steps, state-of-the-art algo-

rithms can all lead to the examination of O(M4) edges.
We propose to use a priority queue to store the

edges that have to be successively considered for addi-
tion to the current reference model. We keep the edges
ordered by their associated statistical significance. As
we have seen in Section 3.1, if the minimal separator as-
sociated with an edge does not change from one step to
another, neither does the statistical significance associ-
ated with this edge. This means that, at every step, the
only edges that are going to change in the queue, are 1)
the edges that are not eligible any more because they
would not keep the graph chordal, 2) the edges that are
newly eligible and 3) the edges that have had a change
of minimal separator.

We have shown in Section 3.2 that such changes
are all associated to the addition and deletion of edges
in the clique-graph: adding a clique-graph edge enables

3An example is the use of “connected” which can be interpreted
as the presence of a direct edge between two vertices, or as the
existence of a path connecting these vertices.

new edges (or change their minimal separator) while
removing a clique-graph edge disables edges.

To keep the explanation simple, and because we will
see that this does not change the overall complexity,
we consider a priority queue based on a heap data
structure, with retrieval and removal of the min in O(1),
and insertion/deletion of an element in O(logn).

We now prove that, even in the worst case, our
solution exhibits a far better complexity than state-of-
the-art methods.
Initialization. At the start, all pairs of edges
are sorted and added to the queue, which requires
O(M2 log(M)) operations.
Edge addition. Any new clique-graph edge has Cab as
its endpoint (see proof to Theorem 3.3). In consequence
any edge impacted by the addition of (a, b) has either
the form (x, a) or (x, b). As a (and b) cannot be
connected to more than M − 1 vertices, at every step
of LLA, at most 2(M − 1) edges might be added to
the queue; resulting in a quasi-linear complexity with
the number of variables for each of the O(M2) possible
steps, thus O(M3 logM).
Edge deletion. Any edge that is removed from the
priority queue has to have been added to it. As there
are at most O(M2 logM + M3 logM) such additions,
there will also be at most O(M3 logM) such deletions.
Overall. For k steps performed, our algorithm thus
requires only O(kM logM) operations; every step of
LLA exhibits a quasi-linear complexity with the number
of variables. This starkly contrasts with the quadratic
O(kM2) complexity of state-of-the-art algorithms [7, 2,
21, 20]. Our experiments will show that this difference
makes it possible to gain efficiency by several orders of
magnitude and allows us to perform LLA for datasets
with thousands of variables.

4 Related research
Researchers have investigated the learning of graphical
log-linear models from high-dimensional data.

A first approach builds log-linear models on subsets
of variables – for which the classical LLA scales up –
and then to combine these sub-models [25, 6]. How-
ever, because they make strong assumptions about the
independence between the variables, they often inaccu-
rately discover associations between variables (see for
example Section 5.2 in [6]), and thus do not align with
the required low false-discovery rate of LLA.

A second approach uses `1-regularizers. This makes
the search possible in very high dimensional spaces, by
biasing the search towards models for which many pa-
rameters are zero. Different configurations have been
studied: performing a logistic regression for every vari-
able independently [24], focusing on a reduced subset of

features [15] or finding a set of variables that best di-
vides the graph [10]. Because these methods aim mostly
at being predictive (as opposed to explanatory), and be-
cause they focus on local substructures, they often re-
sult in false discoveries (see for example the precision
trend depicted in [24] – Section 6) and thus cannot be
considered as LLA methods.

A third approach evaluates the trade-off qual-
ity/complexity of the models in order to ensure that
only associations, for which there is enough evidence,
are included in the model. We have showed with
Chordalysis that LLA can be correctly performed to
datasets with hundreds of variables for the class of de-
composable models – based on χ2 goodness-of-fit tests
in [21] and on information theory in [20]. However, as
we have explained in this paper (and as our experiments
will demonstrate), these methods cannot tackle datasets
with thousands of variables.

5 Experimental evaluation
We have shown in Section 3 that Prioritized Chordalyis
dominates the state of the art in terms of algorithmic
complexity. This section seeks to demonstrate its
computational superiority on real-world datasets. Note
that this section does not seek to further assess the
relevance of χ2 goodness-of-fit tests for LLA, because
it has long been accepted by statisticians (see [5, 21]).
Rather, our experiments seek to demonstrate that we
can achieve further scalability without sacrificing the
statistical soundness of LLA.

To this end, we consider four successively refined
algorithms for LLA, starting from the current state of
the art for high-dimensional data [21] and progressively
incorporating the contributions of this paper:
Version 1 We start with Chordalysis: the first method
that can perform LLA on high-dimensional data [21].
Version 2 We integrate the clique-graph update algo-
rithm from [7] into Version 1.
Version 3We add to Version 2 the ability to keep track
of the minimal (a, b)-separators.
Version 4 – Prioritized Chordalysis We add to
Version 3 the ability to keep track of the best edges
to be successively added in a priority queue.

On the need for a variety of real-world
datasets. As we have demonstrated in Section 3.3, the
worst-case complexity only depends on the number of
variables. This is a consequence of the number of edges
depending on the number of vertices. However, the
number of edges to be discovered from data depends on
the actual dependencies that can be found in data. If
the data is drawn from a probability distribution where
all variables are actually independent, then the process
will quickly finish. In contrast, real-world datasets of-

ten exhibit numerous high-order correlations, leading to
more computation time.

In addition, the quantity of data has also a signif-
icant impact on the computation time. This can seem
counter-intuitive because the scoring of an edge depends
on four entropies only (see Theorem 3.1), and each en-
tropy can be naively computed with a quasi-linear com-
plexity with the size of the dataset. However, increased
data quantity allows more edges to be identified as sta-
tistically significant and will thus often lead to a very
significant increase in the computation time. This is
well exemplified by the toss of a coin and the associated
decision: if we toss the coin 100 times and we observe
51 heads and 49 tails, we cannot state that the coin is
unbalanced. However, it we toss it 100,000 times and
51,000 heads and 49,000 tails, and while this is the same
proportion of heads/tails, statistical tests tell us that
we can confidently state that it is very unlikely that the
coin is balanced. This phenomenon is similar to the
one observed with the learning of decision trees: larger
quantities of data will tend to create deeper trees.

This is why we use a broad range of real-world
datasets, with both various number of variables and
various quantities of data:
Mushroom the classical mushroom dataset, 22 vari-

ables, 8k examples [3].
EPESE epidemiological study of the elderly, 25 vari-

ables, 14k examples [22].
Internet demographic information on internet users,

70 variables, 10k examples [12].
CoIL2000 insurance customer management, 86 vari-

ables, 6k examples [23].
MITFace face recognition dataset, discretized to 4

bins using equal frequency, 362 variables, 31k ex-
amples [17].

Finance stock performance of the companies listed in
the S&P500 over 20 years of trading, 500 variables.

Protein Multiple alignment of the Serpin family of
proteins, 750 variables, 212 proteins [13].

Orphamine Frequency of occurrence of 1260 symp-
toms for 2600 rare diseases, 1260 variables, 2600
examples [18].

ABC Use of the 500 most interesting words in all
the news articles about Melbourne published by
the Australian Broadcasting Network (ABC), 500
variables, 35k examples.

NYT Use of the 2000 most interesting words in 10% of
the articles published by the New York Times from
1987 to 2007, 2000 variables, 180k examples [8].

Where licensing restrictions permit us to do so, we have
made these datasets available at [19].

Figure 4 presents the computation time required
to perform LLA for every version of the algorithm on

these real-world datasets. Note that the graphs asso-
ciated with each dataset are provided at [19]. These
results confirm the superiority of our method. Priori-
tized Chordalysis is the fastest method for all datasets.
Moreover, for all datasets with more than 100 variables
(from MIT Face), Prioritized Chordalysis performs LLA
with about 4 orders of magnitude faster than the state
of the art. For example, for the ABC dataset – which
comprises 500 variables – Prioritized Chordalysis per-
forms LLA in 27 seconds while Chordalysis (Version 1)
requires 39 hours (to obtain exactly the same result);
this is more than a 5200x speedup.

This is a major result that makes it possible to
tackle datasets with thousands of variables. For such
datasets, our experiments indeed show that Prioritized
Chordalysis makes it possible to perform LLA in sec-
onds or minutes, when the state of the art requires
days. For example, for the NYT dataset – which com-
prises 2000 variables – Prioritized Chordalysis performs
LLA in only 3 minutes while Version 1 could not provide
any result in 10 days of computation.

Furthermore, we can observe that all the succes-
sive elements that we have introduced in this paper
play a major role in making LLA scalable to very high-
dimensional datasets. Each of the contributions that we
have made in this paper – from providing a complete
and correct clique-graph-update algorithm, to keeping
track of the minimal separators in order to maintain the
possible modifications in a priority queue – gains one to
two orders of magnitude, depending on the dimension-
ality of the dataset, amount of available evidence, and
complexity of the underlying joint distribution.

Finally, we examine the scalability of Prioritized
Chordalysis, on a dataset with increasing number of
variables. The NYT dataset is a good test bed for this
task because 1) it is our biggest dataset with 180,000
instances and 2000 variables and 2) its variables are
ordered (occurrence frequency of every word), which
makes its study possible with an increasing number of
variables; the most frequent words first.

Figure 5 presents the results of this experiment.
We can observe that our proposed algorithm, Priori-
tized Chordalysis, greatly dominates all other methods.
Moreover, we can see that the magnitude of the im-
provement of Prioritized Chordalysis actually increases
over time, i.e., the functions get farther apart as the
number of variables increases.

Interestingly, we can also see that when the num-
ber of variables increases, Version 2 tends to perform
as fast as Version 3. This is because the time re-
quired to find the minimal separator of every edge from
the clique graph (Version 2) becomes negligible rela-
tive to maintaining the structure of the clique graph.

Version 4
Prioritized Chordalysis

Version 3

1s

1 min

1 hour

13 min

1 day
Version 1 - Chordalysis (2013)

Version 2

Figure 5: Comparison of the computation time required
to perform LLA with regard to the number of variables
used – dataset NYT. We limited the discovery to the first
100 edges to limit the computation time.
In consequence, tracking the minimal separators (Ver-
sion 3) tend to provide only marginal improvement over
Version 2. Note however that Version 4 (Prioritized
Chordalysis) requires to keep track of the minimal sep-
arators to maintain the priority queue; this element is
thus necessary to obtain the exhibited improvement.

6 Conclusions and future work
Log-linear analysis (LLA) is the statistically established
method to select a statistically significant model of the
joint distribution for a categorical dataset. In 2013,
we made LLA possible for datasets with more than a
dozen variables [21]. However, scalability to datasets
with thousands of variables was prevented because the
addition of every edge had to be re-examined at every
step of LLA.

This paper showed that a very small subset of edges
has to be re-examined at each step of LLA, and demon-
strated how to identify the set of such edges. Backed by
these theoretical contributions, we then showed a prior-
ity queue can keep track of the best edge to be added to
the current reference model, thus allowing the reference
model to be successively refined without iterating over
all the possible edges. Finally, we have demonstrated
that our algorithm will, in the worst-case scenario, ex-
amine O(kM logM) modifications while the state of
the art previously required O(kM2) such examinations.
Our experiments demonstrate that this improvement in
worst case complexity translates into dramatic increases
in scalability on real-world data.

Our prioritized algorithm also applies to other
decomposable evaluation metrics such as the KL-
divergence [16] and MDL/MML scores [1, 20], which
further broadens the interest for our algorithm.

+ ++

1s

1 min

1 hour

1 day

10 days

Figure 4: Comparison of the computation time required to perform LLA on various real-world datasets. “+”
indicates that the computation did not finish within 10 days of computation.
7 Acknowledgement
This research has been supported by the Australian
Research Council under grant DP120100553 and by the
Air Force Office of Scientific Research, Asian Office of
Aerospace Research under contract FA2386-15-1-4017.
We would like to thank Wray Buntine for his comments
and help with the news’ datasets, and Jinjing Li for
providing the curated ABC news collection.

References

[1] S. Altmueller and R.M. Haralick, Approximating
high dimensional probability distributions, in IEEE Int.
Conf. on Pattern Recognition, 2004, pp. 299–302.

[2] , Practical aspects of efficient forward selection in
decomposable graphical models, in IEEE Int. Conf. on
Tools with Artificial Intelligence, 2004, pp. 710–715.

[3] K. Bache and M. Lichman, UCI machine learning
repository. http://archive.ics.uci.edu/ml, 2013.

[4] A. Berry and R. Pogorelcnik, A simple algorithm
to generate the minimal separators and the maximal
cliques of a chordal graph, Information Processing
Letters, 111 (2011), pp. 508–511.

[5] R. Christensen, Log-Linear Models and Logistic Re-
gression Second Edition, Springer, 1997.

[6] C. Dahinden, M. Kalisch, and P. Bühlmann, De-
composition and model selection for large contingency
tables, Biometrical Journal, 52 (2010), pp. 233–252.

[7] A. Deshpande, M. Garofalakis, and M.I. Jordan,
Efficient stepwise selection in decomposable models, in
Uncertainty in Artificial Intel., 2001, pp. 128–135.

[8] Sandhaus E., The New York Times Corpus. https:
//catalog.ldc.upenn.edu/LDC2008T19, 2008.

[9] P. Galinier, M. Habib, and C. Paul, Chordal graphs
and their clique graphs, in Graph-Theoretic Concepts
in Computer Science, Lecture Notes in Computer
Science, Springer, 1995, pp. 358–371.

[10] V. Gogate, W.A. Webb, and P. Domingos, Learn-
ing Efficient Markov Networks, in Advances in Neural
Information Processing Systems, 2010, pp. 748–756.

[11] Shelby J Haberman, The analysis of frequency data,
University of Chicago Press, 1974.

[12] S. Hettich and S.D. Bay, UCI KDD archive, 1999.
[13] J.A. Irving, R.N. Pike, A.M. Lesk, and J.C. Whis-

stock, Phylogeny of the serpin superfamily: Impli-

cations of patterns of amino acid conservation for
structure and function, Genome Research, 10 (2000),
pp. 1845–1864.

[14] P.S. Kumar and C.E.V. Madhavan, Minimal vertex
separators of chordal graphs, Discrete Applied Mathe-
matics, 89 (1998), pp. 155–168.

[15] S.-I. Lee, V. Ganapathi, and D. Koller, Effi-
cient Structure Learning of Markov Networks using `1-
Regularization, in Advances in neural Information pro-
cessing systems, 2006, pp. 817–824.

[16] F.M. Malvestuto, Approximating discrete probability
distributions with decomposable models, IEEE Trans-
actions on Systems, Man and Cybernetics, 21 (1991),
pp. 1287–1294.

[17] MIT Center For Biological and Computation
Learning, CBCL Face Database #1. http://www.ai.
mit.edu/projects/cbcl, 2000.

[18] Orphanet, An online database of rare diseases and
orphan drugs. http://www.orpha.net, 2014.

[19] F. Petitjean, Supporting website. http://www.
francois-petitjean.com/Research/SDM2015/, 2014.

[20] F. Petitjean, L. Allison, G.I. Webb, and
A.E. Nicholson, A statistically efficient and scalable
method for log-linear analysis of high-dimensional data,
in IEEE Int. Conf. on Data Mining, 2014, pp. 480–489.

[21] F. Petitjean, G.I. Webb, and A.E. Nicholson,
Scaling log-linear analysis to high-dimensional data, in
IEEE Int. Conf. on Data Mining, 2013, pp. 597–606.

[22] J.O. Taylor, R.B. Wallace, A.M. Ostfeld, and
D.G. Blazer, Established Populations for Epidemio-
logic Studies of the Elderly, 1981-1993. http://dx.
doi.org/10.3886/ICPSR09915, 1998.

[23] P. van der Putten and M. van Someren, A Bias-
Variance Analysis of a Real World Learning Prob-
lem: The CoIL Challenge 2000, Machine Learning, 57
(2004), pp. 177–195.

[24] M.J. Wainwright, P. Ravikumar, and J.D. Laf-
ferty, High-dimensional graphical model selection
using `1-regularized logistic regression, in Advances
in Neural Information Processing Systems, 2007,
pp. 1465–1472.

[25] X. Wu, D. Barbará, and Y. Ye, Screening and
interpreting multi-item associations based on log-linear
modeling, in Int. Conf. on Knowledge Discovery and
Data Mining, 2003, pp. 276–285.

http://archive.ics.uci.edu/ml
https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19
http://www.ai.mit.edu/projects/cbcl
http://www.ai.mit.edu/projects/cbcl
http://www.orpha.net
http://www.francois-petitjean.com/Research/SDM2015/
http://www.francois-petitjean.com/Research/SDM2015/
http://dx.doi.org/10.3886/ICPSR09915
http://dx.doi.org/10.3886/ICPSR09915

	Introduction
	Definitions and problem statement
	Log-linear models and log-linear analysis
	LLA for high-dimensional data
	Why cannot current approaches tackle datasets with 1000+ of variables?

	Method – Prioritized Chordalysis
	What edges require re-examination?
	How to select all edges that need to be re-examined?
	Minimal vertex separators align with edges of the clique-graph
	Efficiently tracking all minimal separators

	Efficiently iterating over the best edges

	Related research
	Experimental evaluation
	Conclusions and future work
	Acknowledgement

