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Abstract In recent years, many new ensemble-based time series classifica-
tion (TSC) algorithms have been proposed. Each of them is significantly
more accurate than their predecessors. The Hierarchical Vote Collective of
Transformation-based Ensembles (HIVE-COTE) is currently the most ac-
curate TSC algorithm when assessed on the UCR repository. It is a meta-
ensemble of 5 state-of-the-art ensemble-based classifiers. The time complexity
of HIVE-COTE – particularly for training – is prohibitive for most datasets.
There is thus a critical need to speed up the classifiers that compose HIVE-
COTE. This paper focuses on speeding up one of its components: Ensembles
of Elastic Distances (EE), which is the classifier that leverages on the decades
of research into the development of time-dedicated measures. Training EE
can be prohibitive for many datasets. For example, it takes a month on the
ElectricDevices dataset with 9,000 instances. This is because EE needs to
cross-validate the hyper-parameters used for the 11 similarity measures it en-
compasses. In this work, Fast Ensembles of Elastic Distances is proposed to
train EE faster. There are two versions to it. The exact version makes it possi-
ble to train EE 10 times faster. The approximate version is 40 times faster than
EE without significantly impacting the classification accuracy. This translates
to being able to train EE on ElectricDevices in 13 hours.
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1 Introduction

Time series data are growing at an unprecedented rate. One of the largest
publicly available training datasets currently holds 1,000,000 satellite image
time series instances (Tan et al., 2017). These data describe the evolution of
an area on Earth and are used to create land-cover maps. Data of this scale are
just the tip of the iceberg. Typically, the creation of land-cover maps require
at least 100 million time series (Inglada et al., 2015, 2016). The computational
demands of learning from these huge amounts of data challenges state-of-
the-art techniques (Tan et al., 2017, 2018). For instance, searching through
long ECG queries with 0.3 trillion data-points using the Nearest Neighbour
classifier with Euclidean distance (NN-ED) without any optimisation took a
week (Rakthanmanon et al., 2012). Note that Euclidean distance is the fastest
to compute out of the standard similarity measures, as it is linear with the
length of the time series. At a smaller scale, processing 45 minutes of speech
data using the Dynamic Time Warping (DTW) distance took 3 hours on a
single core machine (Srikanthan et al., 2011).

Time series classification (TSC) is an important tool for these applications.
Currently the most accurate TSC algorithm is the Hierarchical Vote Collec-
tive of Transformation-based Ensembles (HIVE-COTE) (Lines et al., 2016).
HIVE-COTE is an ensemble of five groups of classifiers that uses a hierarchi-
cal voting scheme to weight the predictions from each group of classifiers (Lines
et al., 2016). The intuition is that combining classifiers from different domains
should perform better than using classifiers from a single domain (Bagnall
et al., 2015). The superiority in classification accuracy requires learning of the
parameters at training time (Bagnall and Lines, 2014).

Unfortunately, training these ensemble-based classifiers is very computa-
tionally demanding and is infeasible for large datasets. Two of the core clas-
sifiers in HIVE-COTE with the highest training time are the Shapelet En-
sembles (SE) (Lines et al., 2016) and the Ensembles of Elastic Distances (EE)
(Lines and Bagnall, 2015). SE is an ensemble that combines 8 base learners
and uses the transformed time series data from the Shapelet Transform (ST)
algorithm (Hills et al., 2014). Given a training set of N time series with length
L, the ST algorithm has a training time complexity of O(N2 · L4).

EE is an ensemble of NN classifiers with 11 different time series distance
measures. State-of-the-art learning of the parameters for all 11 classifiers is
done through leave-one-out cross validation (LOO-CV). It has a training com-
plexity of O(M ·N2 · L2), where M = 100 is the number of parameter values
to learn for each classifier in EE (Bagnall et al., 2017; Lines et al., 2016). The
high training complexity is because the learning algorithm needs to compare

http://www.timeseriesclassification.com/
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each of the time series in the training set of size N with N − 1 other instances
and each comparison typically requires expensive O(L2) operations. This pro-
cess is then repeated for all M parameter values, which is very inefficient and
impractical for time series datasets with large N and long L.

The objective of this work is to speed up EE without affecting the classifica-
tion accuracy. We propose the Fast Ensembles of Elastic Distances (FastEE)
to reduce EE training time. FastEE extends recent work on speeding up the
training time for the NN-DTW algorithm (Tan et al., 2018) to other distance
measures. There are 2 versions of FastEE. The exact version trains FastEE
using the full LOO-CV. The approximate version uses approximate LOO-CV.
Note that our algorithms are developed using LOO-CV, such that the clas-
sification accuracy will be similar to EE, but are equally applicable to other
parameter learning algorithms. FastEE minimizes the number of distances
that need to be calculated by determining for each value calculated the range
of parameter values for which that distance value applies, thus saving the ma-
jority of distance calculations undertaken by the standard approach. It also
uses lower bounds on the distance measures to speed up each of the NN clas-
sifiers. As lower bounds have not been developed for several of the distance
measures in EE, new lower bounds are proposed for these distances measures.

We show the significance of our FastEE algorithms in Figure 1, which
compares the training time of EE to our FastEE algorithms as a function
of training set size. To generate this plot, we sampled the ElectricDevices

dataset – the largest dataset from the UCR benchmark time series archive
(Chen et al., 2015) at different sizes and report the average training time. The
red line shows that training EE on this dataset with merely 9,000 instances
takes 17 days. Our exact FastEE, in blue, reduces this time to 2 days, while
the approximate FastEE, in green, reduces it to 13 hours. The exact version is
10 times faster than EE, while learning the exact same classifier. The approx-
imate version is 40 times faster, but may slightly compromise classification
accuracy.

This paper is organised as follows. We provide the necessary background to
understand our work and review key related work in TSC in Section 2. As lower
bounding a distance measure has shown numerous successes in speeding up NN
classifiers (Keogh and Ratanamahatana, 2005; Lemire, 2009; Rakthanmanon
et al., 2012), we believe that it can also speed up EE. Section 3 describes the
lower bounds required to speed up EE. We also propose new lower bounds for
distance measures for which lower bounds have not previously been derived.
Then in Section 4, we introduce FastEE to speed up the training time for EE.
We evaluate the performance of FastEE in Section 5. Finally, we conclude
our paper and provide some future directions in Section 6.

2 Background and related work

This section provides the necessary background to understand our proposed
method and describes key related work in speeding up time series classification
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Fig. 1: Training time of EE (17 days), our exact FastEE (2 days) and our
approximate FastEE (13 hours) on the ElectricDevices dataset at different
sizes.

(TSC), specifically the nearest neighbour (NN) type classifiers. For simplicity,
we assume that all the time series are of the same length L. However, it is
trivial to generalize the algorithm to different lengths.

2.1 Ensembles of Elastic Distances

Similarity in the time domain has been a major focus for a large body of
TSC research (Bagnall and Lines, 2014; Bagnall et al., 2017; Ding et al., 2008;
Keogh and Ratanamahatana, 2005; Lines and Bagnall, 2015; Petitjean et al.,
2012; Silva and Batista, 2016; Tan et al., 2017). The Ensembles of Elastic Dis-
tances (EE) is the most accurate TSC classifier in the time domain (Bagnall
et al., 2017; Lines and Bagnall, 2015). EE is a meta classifier that consists of
11 NN classifiers, each of which uses a different time series distance measure
(Lines and Bagnall, 2015). A NN classifier searches for the nearest neighbour
within the training set and labels the query time series with the label of the
nearest neighbour. Two time series are compared using a distance measure
such as Euclidean distance or Dynamic Time Warping (DTW), that tries to
achieve the optimal alignment between the two time series. Many distance
measures are proposed for TSC in the last decade (Bagnall et al., 2017; Chen
and Ng, 2004; Chen et al., 2005; Marteau, 2009; Sakoe and Chiba, 1971; Stefan
et al., 2013). When tested on the UCR benchmark archive, they are not signif-
icantly different from each other in terms of classification accuracy (Lines and
Bagnall, 2015). An ensemble (EE) generalises this so that the contributions
from all the distance measures are considered, which significantly improves the
classification accuracy (Lines and Bagnall, 2015).

As is typical for supervised classifiers, EE needs to be trained before per-
forming any classification tasks. One of the key aspects of learning for EE
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Fig. 2: Classification error for NN-DTW on some datasets from the UCR
benchmark archive (Chen et al., 2015) at various warping windows r

.

is to find values for the parameters that affect the behaviour of the distance
measures (Lines and Bagnall, 2015). For instance, the choice of warping win-
dow (parameter) for one of the distance measures – Dynamic Time Warping
(DTW) significantly affects the error rate of NN-DTW, as shown in Figure
2. The best warping window is typically set through leave-one-out cross val-
idation (LOO-CV) on the training set (Bagnall et al., 2017). It tries all of a
predefined set of potential values and selects the one that gives the highest
accuracy. LOO-CV may not be the best way to learn the best parameter, but
it is simple, and effective in practice (Dau et al., 2017). EE learns the values
of these parameters in a similar manner (Lines and Bagnall, 2015). Since EE
is composed of NN type classifiers, this task then boils down to finding the
nearest neighbour of each time series inside the training dataset for each of M
parameter values.

Algorithm 1 describes the training process of EE using LOO-CV. The
algorithm searches for the parameter value that gives the highest LOO-CV
accuracy for each of the NN classifiers. Line 2 initialises the best accuracy for
a NN classifier in EE. Lines 3-15 shows the typical procedure of doing LOO-
CV for the NN classifier. Line 6 searches for the NN of the query Q from all
the instances in the training set T except Q itself, with respect to the distance
di. The label (class) of NN is the predicted label for Q. The parameter that
gives the highest accuracy is stored.

Then for classification, EE weights the prediction from each of the NN
classifiers using their LOO-CV accuracy (Lines and Bagnall, 2015). It has
been shown that EE weighted with LOO-CV accuracy is significantly more
accurate on the UCR datasets than all the individual NN classifiers Lines and
Bagnall (2015). It is also part of the more accurate COTE (Bagnall et al.,
2015) and HIVE-COTE (Lines et al., 2016).



6 Chang Wei Tan et al.

Algorithm 1: TrainEE LOOCV(T , C)

Data: T : training data with size N
Data: C: set of NN classifiers paired with an elastic distance measure
Result: P?: set of best parameter value for each elastic distance measure
Result: bestAccuracy: set of best LOO-CV accuracies for each elastic distance

measure
1 foreach Ci ∈ C do // go through all classifiers in the ensemble

2 for Pip ← Pi1 to PiM do // go through all M parameters

3 nCorrect← 0
4 foreach Q ∈ T do // do LOO-CV

5 NN = Ci.nnSearch(Q, T \Q,Pip)

6 if NN.class = Q.class then
7 nCorrect++
8 end

9 end
10 if nCorrect > bestNCorrecti then // select the higest accuracy

11 bestNCorrecti ← nCorrect

12 P?i ← Pip
13 end

14 end
15 bestAccuracyi ← bestNCorrecti/|T |
16 Ci.setParam(P?i ) // set the best parameter for classifier Ci
17 end

2.2 Elastic distance measures

Since EE consists of NN type classifiers, the ultimate aim of this work is to
minimise the training time of NN type classifiers. The NN type classifiers are
each paired with a distance measure, that returns a distance, or similarity,
score for a pair of time series. Thus it is important to first understand the
principles of each distance measure. There are 8 different distance measures
that are commonly used in the literature (Lines and Bagnall, 2015). Together
with their variants, they form the 11 distance measures used in EE (Lines
and Bagnall, 2015). This section briefly describes and generalises the different
measures used in EE in order to understand our work in this paper. We refer
interested readers to the paper (Lines and Bagnall, 2015) for more technical
details.

2.2.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a popular time series distance measure. It
has been studied and tested extensively on the benchmark time series archive
(Chen et al., 2015). DTW was firstly introduced as a spoken word recognition
tool (Sakoe and Chiba, 1971, 1978) to handle distortions in the time axis which
cannot be handled by the Euclidean distance. It stretches and realigns a time
series to better match the other time series (Sakoe and Chiba, 1971). Figure 3a
illustrates the matching of two time series Q and C using DTW.
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Fig. 3: (a) DTW alignment for two time series Q (blue) and C (red). (b) Cost
matrix DDTW with warping path W (green)

DTW finds the optimal path along the cost matrix DDTW. Each cell of
the matrix DDTW(i, j) represents the cumulative cost of aligning the two time
series as described in Equation 1. An example of the optimal path is illustrated
as the green path in Figure 3b. Note that most elastic distances also find this
form of optimal path but with a different cost function.

DDTW(i, j) = (qi − cj)2 + min


DDTW(i− 1, j − 1)

DDTW(i, j − 1)

DDTW(i− 1, j)

(1)

Finding this optimal path can be very time consuming, especially for long
time series. Hence it is common to apply a global constraint to the path where
only points within a window range can be aligned (Itakura, 1975; Ratanama-
hatana and Keogh, 2004; Sakoe and Chiba, 1978). This is known as Con-
strained DTW. Furthermore, a global constraint also reduces pathological
warping that will often reduce the classification accuracy (Keogh and Paz-
zani, 2001; Ratanamahatana and Keogh, 2004). There are many variants to
this constraint such as the Ratanamahatana-Keogh Band (Ratanamahatana
and Keogh, 2004), Itakura Parallelogram (Itakura, 1975), and the most widely
adopted Sakoe-Chiba Band (Sakoe and Chiba, 1978). In this work, we focus
on the Sakoe-Chiba band which is commonly known as warping window, r –
a parameter to DTW and we write DTW with r as DTWr.

2.2.2 Derivative Dynamic Time Warping

Derivative Dynamic Time Warping (DDTW) is a variant to DTW with the
motivation to reduce singularities by transforming the time series into a first
order derivative (Keogh and Pazzani, 2001). Singularities arise, for example,
when a point on a rising trend is mapped to a point on a falling trend. First
order derivatives eliminate this problem by considering the higher level feature
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of shape rather than just the value of the data point in the time series (Keogh
and Pazzani, 2001). DDTW is computed the same way as DTW using the
transformed time series (Keogh and Pazzani, 2001). The derivative for a query
time series Q = {q1, , ..., qL} is Q′ = {q′2, ..., q′L−1}. Equation 2 computes q′i
which is defined as the average of the slopes between qi−1, qi and qi+1 (Keogh
and Pazzani, 2001). Note that, q′i is not defined for the first and last element
of the time series (Keogh and Pazzani, 2001). Similarly a warping window r
can be applied to DDTW to better reduce pathological warping and speed
up DDTW computations.

q′i =
(qi − qi−1) + (qi+1 − qi−1)/2

2
(2)

2.2.3 Weighted Dynamic Time Warping

Another variant of DTW – Weighted Dynamic Time Warping (WDTW) was
also proposed to reduce pathological warping (Jeong et al., 2011). To prevent
the alignment of qi with cj that are too far away in the time dimension,
WDTW weighs the cost of aligning qi to cj using a modified logistic weight
function described in Equation 3, where wmax is the upper bound for the
weight parameter and is typically set to 1 (Jeong et al., 2011). The parameter
g controls the level of penalization for further points (Jeong et al., 2011). The
optimal range for g is distributed between 0.01 to 0.6 as suggested by the
authors (Jeong et al., 2011). If i is far from j, it will have a larger weight and
vice versa. Note that weights can also be applied to variants of DTW such as
DDTW – giving Weighted DDTW (Jeong et al., 2011).

wa =
wmax

1 + e−g·(a−L/2)
(3)

2.2.4 Longest Common Subsequence

The Longest Common Subsequence – LCSS is commonly used for pattern
matching in the context of string sequences (Boreczky and Rowe, 1996; Vla-
chos et al., 2002). It finds the longest common subsequence that best matches
the two string sequences and can be extended to numeric sequences (time
series) using a distance threshold ε. Two elements are considered a match if
the distance between them is less than ε. Each cell of the matrix DLCSS(i, j)
indicates the number of matches between the two time series (length of the
longest common subsequence) described in Equation 4. A global constraint, ∆
can also be applied to the LCSS distance.

DLCSS(i, j) =


0 if i = 0, j = 0

1 +DLCSS(i− 1, j − 1) if |qi − cj | ≤ ε

max

{
DLCSS(i− 1, j)

DLCSS(i, j − 1)
otherwise

(4)
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2.2.5 Edit Distance with Real Penalty

Edit Distance with Real Penalty (ERP) is an edit distance that satisfies the
triangular inequality, which is important for indexing (Chen and Ng, 2004;
Chen et al., 2005). Edit distances like DTW and LCSS are not metric and
do not satisfy the triangular inequality. DTW does not satisfy the triangular
inequality because it replicates the previous element when a gap is added. ERP
uses the distance between the two points as the penalty if a gap is not added.
If a gap is added, the penalty will be the distance between that point and a
constant parameter g. This is described in Equation 5. The author suggested
a penalty g = 0. Similarly the alignment path can also be constrained with
the bandsize parameter to prevent singularities in alignment.

DERP(i, j) = min


DERP(i− 1, j − 1) + (qi − cj)2

DERP(i− 1, j) + (qi − g)2

DERP(i, j − 1) + (g − cj)2
(5)

2.2.6 Move-Split-Merge

The Move-Split-Merge (MSM) distance is a metric that was proposed to over-
come the limitations of previous distance measures: the Euclidean distance is
not robust to temporal misalignment; edit distances like DTW and LCSS are
not metric; the ERP distance is a metric but not translation invariant (Jeong
et al., 2011). MSM is a metric, robust to temporal misalignment and trans-
lation invariant (Stefan et al., 2013). The cost for the move operation is the
pairwise distance between two points (Stefan et al., 2013). The cost for the
split and merge operations includes a constant penalty value c (Stefan et al.,
2013). Equation 6 and 7 show the cost function for MSM and the computation
of each elements in the cost matrix DMSM (Stefan et al., 2013).

C(qi, qi−1, cj) =


c if qi−1 ≤ qi ≤ cj or qi−1 ≥ qi ≥ cj

c + min

{
|qi − qi−1|
|qi − cj |

otherwise

(6)

DMSM(i, j) = min


DMSM(i− 1, j − 1) + |qi − cj |
DMSM(i− 1, j) + C(qi, qi−1, cj)
DMSM(i, j − 1) + C(cj , qi, cj−1)

(7)

2.2.7 Time Warp Edit Distance

Previous distance measures do not consider the timestamps of the time series.
Timestamps are important when time series are sampled with various sam-
pling rates that might be non-uniform (Marteau, 2009). The Time Warp Edit
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Distance (TWED) was proposed with the motivation of comparing time se-
ries using their timestamps (Marteau, 2009). There are three main operations
(deleteA, deleteB and match) used in TWED to transform the time series.
A constant λ penalty is used in the delete operations. The match operation
computes the distance of the current and previous data points. TWED con-
trols warping in time series by multiplying the difference in timestamps with
a constant stiffness parameter v. v = ∞ means that points that off-diagonal
of the matrix are not considered and is similar to the Euclidean distance while
v = 0 is similar to DTW (Marteau, 2009). The cost of all the three operations
and the computation of each elements in the cost matrix DTWED are described
in Equation 8 and 9 respectively. Note that tqi is the timestamps.

match : γM = (qi − cj)2 + (qi−1 − cj−1)2 + v(|tqi − tcj |+ |tqi−1
− tcj−1

|)
deleteA : γA = (qi − qi−1)2 + v(|tqi − tqi−1

|) + λ
deleteB : γB = (ci − ci−1)2 + v(|tci − tci−1

|) + λ
(8)

DTWED(i, j) = min


DTWED(i− 1, j − 1) + γM match

DTWED(i− 1, j) + γA deleteA

DTWED(i, j − 1) + γB deleteB

(9)

2.2.8 Generalising elastic distance

An elastic distance measure E transforms a time series to better match and
align with another time series. All distance measures in EE are elastic other
than Euclidean distance. Most of the elastic distance measures have O(L2)
complexity to calculate. They can all be solved with dynamic programming
using a L × L cost matrix D. Thus, we say that E has an alignment path
W = {W1, ...,WK} along the cost matrix D that aligns the two time series Q
and C. Each of the element Wk = (i, j) is a link indicating qi is aligned to cj .
Equation 10 shows a general equation for elastic distance measures, whereW1

k

indicates the first element inWk,W2
k the second, costP(qW1

k
, cW2

k
), represents

the cost of aligning the two points qW1
k

and cW2
k
, given a parameter P and is

explained in previous section.

E(Q,C) =

K∑
k=1

costP(qW1
k
, cW2

k
) (10)

The elastic distance measures are usually parametrised by one or two pa-
rameters that need to be learned at training time. Table 1 outlines the respec-
tive time complexity and parameters for each of the elastic distance measures.
Overall, the parameters for elastic distance measures can be categorised into
three types. The first is an alignment constraint parameter that constrains the
alignment path of the cost matrix D, such as the warping window in DTW.
The second is a penalty cost to the alignment in case of misalignment. The
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Elastic Distances Measures
Time

Complexity
Path

Constraint
Alignment
Penalty

Threshold

Euclidean Distance O(L) - - -
Dynamic Time Warping O(L2) - - -
Constrained DTW O(r · L) r - -
Derivative DTW O(L2) - - -
Constrained DDTW O(r · L) r - -
Weighted DTW O(L2) - g -
Weighted DDTW O(L2) - g -
Longest Common Subsequence O(∆ · L) ∆ - ε
Edit Distance with Real Penalty O(bandsize · L) bandsize g -
Move-Split-Merge Distance O(L2) - c -
Time Warp Edit Distance O(L2) v λ -

Table 1: Elastic distance measures in with their time complexity and param-
eters

third is a threshold parameter, which determines whether two points are the
same.

Algorithm 2 presents a general algorithm to fully compute any given elas-
tic distance measure E (without a global alignment constraint) given their
threshold or alignment penalty parameters, denoted by a single variable P,
the cost of aligning two points qi, cj and the cost of a path from q1, c1 to those
points. Note that this cost is derived from the cost of the path to some subset
of the costs of the paths to qi−1, cj−1; qi, cj−1; and qi−1, cj . For the case where
the warping path is constrained, only the start and end variables need to be
modified. For instance, given a constraint variable W , the respective start and
end variables are replaced: end←W in Line 3, start← max(2, i−W ) in Line
12 and end ← min(L, i + W ) in Line 13. Note that W = r for DTWr and
DDTWr; W = ∆ for LCSS; W = bandsize for ERP.

2.3 Related work

The accuracy of EE classifier, comes at a high cost of polynomial time com-
plexity, which is prohibitive for long and large datasets. As shown in the pre-
vious section, elastic distance measures generally have polynomial O(L2) time
complexity. A single classification of a query using the NN classifier requires
O(N · L2) operations, as the the algorithm needs to compare the query time
series with all the N training instances. On the other hand, as indicated in
Algorithm 1, with M parameter values to select from, a typical training time
for a single NN classifier in EE requires O(M · N2 · L2) operations. This is
because for each of the N instances in the training set T , the algorithm needs
to scan through all N − 1 examples to find its nearest neighbor and repeat
for all M parameter values. This is infeasible when L is long and N is large
as illustrated in Figure 1. An exhaustive search of all M parameters is time
consuming, thus many applications use a subset of parameter values by setting
M = 100. However as we will show in Section 5, training with M = 100 is still
inefficient and slow.

A great amount of research has been done to speed up NN type classifiers,
in particular the NN-DTW classifier (Keogh and Ratanamahatana, 2005; Kim
et al., 2001; Lemire, 2009; Petitjean et al., 2014; Rakthanmanon et al., 2012;
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Algorithm 2: Full Elastic Distance, E(Q, C, P)

Input: Q: Query time series
Input: C: Candidate time series
Input: P: Cost or threshold parameter for an elastic distance measure, E
Output: d: Elastic distance measure

1 L← Q.length
2 Let D be an L× L matrix initialized to ∞
3 end ← L
4 D(1, 1)← costP (q1, c1)
5 for i← 2 to end do // fill up the first column of matrix D
6 D(i, 1)← costP (qi, c1) + pathcostP (q1, c1, qi, c1)
7 end
8 for j ← 2 to end do // fill up the first row of matrix D
9 D(1, j)← costP (q1, cj) + pathcostP (q1, c1, q1, cj)

10 end
11 for i← 2 to L do // fill the rest of matrix D
12 start ← 2
13 end ← L
14 for j ← start to end do
15 D(i, j)← costP (qi, cj) + pathcostP (q1, c1, qi, cj)
16 end

17 end
18 if E is LCSS then
19 return 1−D(L,L)/L
20 else
21 return D(L,L)
22 end

Silva and Batista, 2016; Tan et al., 2017). A common way is to use efficient
lower bound functions with O(1) to O(L) complexity to minimise the expen-
sive O(L2) distance computation and to reduce the search space (Keogh and
Ratanamahatana, 2005; Kim et al., 2001; Lemire, 2009; Rakthanmanon et al.,
2012; Shen et al., 2018). Different lower bounds can be cascaded to create
tighter lower bounds that are more effective at pruning unpromising candi-
dates (Rakthanmanon et al., 2012). It may be possible to determine lower
bounds on the final distance during the dynamic programming process. Thus,
the computation of an elastic distance measure can also be early abandoned
(Rakthanmanon et al., 2012). The idea is to abandon the distance computa-
tion as soon as the cumulative distance in the cost matrix D is greater than the
distance to the nearest neighbour (Rakthanmanon et al., 2012). Cells in the
cost matrix DDTW that are guaranteed to not be part of the DTW warping
path can be skipped as well (Silva and Batista, 2016).

Contract algorithms are also popular to speed up a classification algorithm
in terms of training and classification time without compromising on the clas-
sification accuracy (Flynn et al., 2019; Petitjean et al., 2014; Tan et al., 2017).
A recent work proposed c-RISE (Flynn et al., 2019) that gives a contract train-
ing time for the Random Interval Spectral Ensemble (RISE) – a component of
HIVE-COTE (Lines et al., 2016). Indexing techniques such as building a hi-
erarchical K-means tree when combined with contract algorithms (Tan et al.,
2017) are effective in reducing the classification time. Moreover, we can also
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classify a time series by comparing it to the average time series in each of the
classes in the training set (Petitjean et al., 2014). This significantly reduces
the classification time and can improve the classification accuracy (Petitjean
et al., 2014).

Since most elastic distance measures are very similar, these techniques
developed for NN-DTW can be extended to other elastic distance measures
to speed up this process. As will be discussed in Section 4, FastEE leverages
off a recent work that utilises some of these techniques.

Recently, we proposed the Proximity Forest algorithm (Lucas et al., 2019),
a close relative to EE, as a contribution to scalable time series classification.
Proximity Forest is an ensemble of proximity trees where each tree is a combi-
nation of elastic distances used in EE (Lucas et al., 2019). Training of a single
proximity tree first involves choosing a set of exemplars, a random time series
per class. Then the exemplars are compared to every instance in the training
set using a random distance measure with a random parameter. Finally, the
training set is split based on the proximity of the training set to the exemplars
and the process is repeated until the leaf nodes are pure. Proximity Forest has
shown to be more scalable and accurate than EE (Lucas et al., 2019).

2.4 Learning the parameters of an elastic distance measure efficiently

As discussed in Section 2.2, most of the elastic distance measures require
learning the parameter from a set of M parameter values using LOO-CV
to perform well (Bagnall and Lines, 2014; Bagnall et al., 2017). LOO-CV
has been used to learn the best parameter for an elastic distance for decades
(Bagnall et al., 2017; Dau et al., 2017; Jeong et al., 2011; Ratanamahatana
and Keogh, 2005). It is simple and works well in practice but it may not be
the best method to learn the best parameter (Dau et al., 2017). There are
other alternatives such as random search, k-fold or hold out cross validation
to learn the parameters, our work only focus on LOO-CV as this is the learning
method for EE. It is important to note that our algorithms developed in this
work are equally applicable to the alternatives and will yield the same results.
These alternatives may improve the performance of EE but we leave this as
our future work.

Typically, the training time for a single NN classifier in EE requires O(M ·
N2 · L2) operations and is infeasible for large N . Although there has been
much research into speeding up the NN classifier (Section-2.3), they are still
not efficient in dealing with hundreds of parameter values. For instance, our
experiments in Section 5 show that there is no significant improvement in
training time by using just the lower bounds. Furthermore, as demonstrated
in (Tan et al., 2018), learning the exact best warping window (parameter) for
DTW requires the enumeration of all possible windows (M = L) which is a
laborious process (Tan et al., 2018). This process can be seen as searching for
the nearest neighbour of all N time series for all windows, creating a (N ×M)
NNs table as shown in Table 2 (Tan et al., 2018). Filling this table naively
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Nearest neighbor at different parameters
0 1 · · · M − 1 M

C1 C24(2.57) C55(0.98) · · · C55(0.98) C55(0.98)
...

...
CN C60(4.04) C47(1.61) · · · C47(1.61) C47(1.61)

Table 2: Table of NNs for each m. A cell (i,m) = Ck(dist) means Ci has Ck
as its NN for parameter m with distance dist.

requires O(N2 · L3) operations. Thus, it is common to explore just a subset
of these windows, giving an approximate best warping window. Usually at
least 100 windows in the range of 0 to L are considered (Bagnall et al., 2017).
However this is still not efficient, as the complexity of N2 ·L2 takes over very
quickly for large N and long L.

The Fast Warping Window Search (FastWWS) is an exact and efficient
algorithm to learn the best warping window for DTW that is at least 2 orders
of magnitude faster than the state of the art (Tan et al., 2018). The algorithm
is based on the observation that many distance computations are redundant
in the standard approach to learning the best warping window (Tan et al.,
2018). It takes advantage of the relationship between DTW and its warping
window (Tan et al., 2018). There are three main properties that form the basis
of FastWWS (Tan et al., 2018). First, a DTW warping path can be valid for
several windows. When unconstrained, DTW finds the optimum path that
goes through the cost matrix D. This optimum path has a maximum width
r? from the diagonal. If the window r is larger than r?, then the path will
not change for any smaller window r? ≤ r′ ≤ r and thus will return the same
distance, as illustrated in Figure 4. Warping windows whose DTW distances
are predetermined need not be computed. Second, DTW is monotone with
the warping window. Lastly, The Keogh lower bound (lower bound of DTW)
is monotone with warping window as well. Lower bounds will be explained
in more detail in the next section. These three properties allow the searching
for the best warping window to start with the largest window L and proceed
through ever smaller windows, skipping the computation of many of the DTW
distances. We refer the interested reader to the paper (Tan et al., 2018) for
a detailed explanation of the algorithm. With the aim of speeding up EE,
this work generalises these properties and extends FastWWS to other elastic
distance measures.

3 Proposed lower bounds for elastic distances

Lower bounding has shown a lot of success in speeding up the NN classifier
especially the NN-DTW classifier (Keogh and Ratanamahatana, 2005; Rak-
thanmanon et al., 2012; Tan et al., 2017). If a sequential search is performed
through potential nearest neighbors for series A, if a lower bound on the dis-
tance to B exceeds the distance to the nearest neighbor found so far, then B
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can be discarded as a potential nearest neighbor without the need to calculate
its distance. This speeds up NN type classifiers by minimising the number of
expensive O(L2) distance computations. Typically an effective lower bound
has cheap O(1) to O(L) complexity. EE is an ensemble of 11 NN classifiers
with different elastic distance measures, thus it is possible to speed up EE
using lower bounds. Appendix A describes the existing lower bounds that are
used in this work.

To the best of our knowledge, no prior lower bounds have been derived
for WDTW, MSM or TWED. In this section, we present new lower bounds
for these measures. Note that some of these lower bounds may not be tight.
Nonetheless, they are sufficient to provide reasonable speed ups. With the
addition of these lower bounds, we have useable lower bounds for all the elastic
measures in EE. We do not use a lower bound for Euclidean distance because
its complexity is linear with respect to series length and hence it is efficient to
compute in full.

3.1 WDTW lower bound

We define the lower bound for WDTW (LB WDTW) in Equation 11 using
similar intuition to LB Keogh. First, we build the envelope time series for
C. Since there are no alignment constraints on WDTW, we have the upper
envelope UE = Cmax and the lower envelope LE = Cmin. Then LB WDTW
distance is computed using Equation 11 by multiplying the sum with the
minimum weight penalty w0.
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LB WDTW(Q,C) =

√√√√√√w0

L∑
i=1


(qi − Cmax)2 if qi > Cmax

(qi − Cmin)2 if qi < Cmin

0 otherwise

(11)

Theorem 1 For any two time series Q and C of length L, and an alignment
path W = {W1, ...,WP }, where Wk = (i, j) indicates qi is aligned to cj, the
following inequality holds: LB WDTW(Q,C) ≤WDTW(Q,C)

Proof We can rewrite the equation of WDTW usingW and the weights from
Equation 3 into the following

WDTW(Q,C) =

√√√√ P∑
k=1

w|W1
k−W

2
k|(qW1

k
− cW2

k
)2

where W1
k = i,W2

k = j and we wish to proof the following

w0

L∑
i=1


(qi − Cmax)2 if qi > Cmax

(qi − Cmin)2 if qi < Cmin

0 otherwise

≤
P∑
k=1

w|W1
k−W

2
k|(cW2

k
− qW1

k
)2

Note that both sides are squared as the terms under the square root are
both positive. We know that L ≤ P , so we can match every term on the left
hand side (LHS) with a term on the right hand side (RHS) giving P −L terms
unmatched.

w0

L∑
i=1


(qi − Cmax)2 if qi > Cmax

(qi − Cmin)2 if qi < Cmin

0 otherwise

≤

∑
k∈matched

w|W1
k−W

2
k|(qW1

k
− cW2

k
)2+∑

k∈unmatched

w|W1
k−W

2
k|(qW1

k−cW2
k

)2

Let us consider the relationship between the matched terms on the RHS
and the LHS terms. There are three cases to be considered on the LHS of
the inequality. We start with the first one qi > Cmax. From Equation 3, w0 is
the minimum weight, so w0 ≤ w|i−j|. Since Cmax ≥ cj and if qi > Cmax, then
(qi − Cmax)2 ≤ (qi − cj)2. Thus w0(qi − Cmax)2 ≤ w|j−i|(qi − cj)2. Similarly if
qi < Cmin, and Cmin ≤ cj , then (qi − Cmin)2 ≤ (qi − cj)2. Since (qi − cj)2 is
non-negative, the third case yields 0 ≤ (qi − cj)2.

If all the matched terms are larger than the LHS terms, then the unmatched
terms will need to be negative for the inequality to be false. Fortunately, it
is impossible for the unmatched terms to be negative since w|i−j| > 0 (from
Equation 3) and the squared terms can never be negative. Therefore our in-
equality holds and LB WDTW(Q,C) ≤WDTW(Q,C). ut
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3.2 MSM lower bound

We define the lower bound for MSM (LB MSM) in Equation 12. The first
term of LB MSM is |q1 − c1| and is extracted directly from MSM (Stefan
et al., 2013). Following Equation 6, if qi−1 ≥ qi > Cmax, the lower bound adds
the minimum of |qi − Cmax| and c. Similarly if qi−1 ≤ qi < Cmin, the lower
bound adds the minimum of |qi − Cmin| and c.

LB MSM(Q,C) = |q1 − c1|+
L∑
i=2


min(|qi − Cmax|, c) if qi−1 ≥ qi > Cmax

min(|qi − Cmin|, c) if qi−1 ≤ qi < Cmin

0 otherwise

(12)

Theorem 2 For any two time series Q and C of length L, and an alignment
path W = {W1, ...,WP }, where Wk = (i, j) indicates qi is aligned to cj, the
following inequality holds: LB MSM(Q,C) ≤MSM(Q,C)

Proof We can rewrite the equation of MSM from Equation 7 using W into
the following:

MSM(Q,C) = |q1 − c1|+
P∑
k=2

cost(qW1
k
, cW2

k
)

where W1
k = i,W2

k = j, cost(qW1
k
, cW2

k
) represents the cost of aligning qW1

k

to cW2
k

under MSM. From Equation 7, MSM is based on three different cost
values.

cost(qW1
k
, cW2

k
) =


|qi − cj |
C(qi, qi−1, cj)
C(cj , qi, cj−1)

where C(x, y, z) is defined in Equation 6. The cost is c + min(|x− y|, |x− z|)
if x is not between y and z otherwise the cost is c. And we wish to proof the
following

L∑
i=2


min(|qi − Cmax|, c) if qi−1 ≥ qi > Cmax

min(|qi − Cmin|, c) if qi−1 ≤ qi < Cmin

0 otherwise

≤
P∑
k=2

cost(qW1
k
, cW2

k
)

The proof for the first term is trivial as they are equal on both sides. We know
that L ≤ P , so we can match every term on the LHS with a term on the RHS,
giving P − L terms unmatched.
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L∑
i=2


min(|qi − Cmax|, c) if qi−1 ≥ qi > Cmax

min(|qi − Cmin|, c) if qi−1 ≤ qi < Cmin

0 otherwise

≤

∑
k∈matched

cost(qW1
k
, cW2

k
)+∑

k∈unmatched

cost(qW1
k
, cW2

k
)

Let us consider the relationship between the matched terms on the RHS
and the LHS terms. We wish to proof that for each i > 1 term, all the 3 cases
inside LB MSM is less than or equal to the minimum of the cost functions.

For the first case qi−1 ≥ qi > Cmax, Cmax ≥ cj , and assuming |qi−Cmax| ≤
c,

– |qi − Cmax| ≤ |qi − cj | because Cmax ≥ cj , i.e. cj is further from qi than
Cmax.

– |qi−Cmax| ≤ C(qi, qi−1, cj) because |qi−Cmax| ≤ c, c ≤ C(qi, qi−1, cj) and
qi−1 ≥ qi > Cmax ∴ C(qi, qi−1, cj) = c from Equation 6.

– |qi −Cmax| ≤ C(cj , qi, cj−1) because |qi −Cmax| ≤ c and c ≤ C(cj , qi, cj−1)
from Equation 6.

Assuming if c ≤ |qi − Cmax|, then c ≤ |qi − Cmax| ≤ |qi − cj |, c ≤
C(qi, qi−1, cj) and c ≤ C(cj , qi, cj−1) are still valid and thus the above proof
holds.

For the second case qi−1 ≤ qi ≤ Cmin, Cmin ≤ cj , and |qi − Cmin| ≤ c,

– |qi − Cmin| ≤ |qi − cj | because Cmin ≤ cj , i.e. cj is further from qi than
Cmin.

– |qi − Cmin| ≤ C(qi, qi−1, cj) because |qi − Cmin| ≤ c, c ≤ C(qi, qi−1, cj) and
qi−1 ≤ qi < Cmin ∴ C(qi, qi−1, cj) = c from Equation 6.

– |qi − Cmin| ≤ C(cj , qi, cj−1) because |qi − Cmin| ≤ c and c ≤ C(cj , qi, cj−1)
from Equation 6.

Similarly, the above proof holds for the case where c ≤ |qi − Cmin|. The
third case is always true because all of the cost functions are non-negative.

Since all the matched terms are larger than LHS, then the sum of the
unmatched terms has to be negative for the inequality to be false. This is not
possible because c ≥ 0 is non negative and the absolute differences in the cost
values and Equation 6 can never be negative. Therefore LB MSM(Q,C) ≤
MSM(Q,C) holds. ut

3.3 TWED lower bound

TWED takes into account the differences in timestamps ti − ti−1 in the cost
of aligning a time series pair. Since in this work, we only consider time series
that are equally spaced and use the indexes of the time series points as the
timestamps, we will always have ti − ti−1 = 1. A lower bound for TWED
was proposed in (Marteau, 2009) for range query search. The lower bound
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down-samples the time series and computes the TWED distance of the down-
sampled time series. In a worst case scenario, the down-sampled time series
could be the full time series and the lower bound will be more expensive to
compute than the full distance. Thus, we define a new lower bound for TWED
(LB TWED) in Equation 13. Note that this lower bound is also applicable
for ti − ti−1 > 1.

LB TWED(Q,C) = min


(q1 − c1)2

q21 + v + λ

c21 + v + λ

+

L∑
i=2


min(v, (qi −max(Cmax, qi−1))2) if qi > max(Cmax, qi−1)

min(v, (qi −min(Cmin, qi−1))2) if qi < min(Cmin, qi−1)

0 otherwise

(13)

Theorem 3 For any two time series Q and C of length L, a stiffness pa-
rameter v ≥ 0 and a constant penalty λ ≥ 0, and an alignment path W =
{W1, ...,WP }, where Wk = (i, j) indicates qi is aligned to cj, the following
inequality holds: LB TWED(Q,C) ≤ TWED(Q,C)

Proof We can rewrite the equation for TWED using W as the following

TWED(Q,C) =

P∑
k=1

cost(qW1
k
, cW2

k
)

where W1
k = i,W2

k = j, cost(qW1
k
, cW2

k
) represents the cost of aligning qW1

k
to

cW2
k

under TWED. From Equation 8, TWED is based on three different cost
values.

cost(qW1
k
, cW2

k
) =


(qi − cj)2 + v|tQi − tCj |+ (qi−1 − cj−1)2 + v|tQi−1 − tCj−1|
(qi − qi−1)2 + v|tQi − t

Q
i−1|+ λ

(cj − cj−1)2 + v|tCj − tCj−1|+ λ

where q0 = 0, c0 = 0, tQ0 = 0 and tC0 = 0. and we wish to proof the following

LB TWED(Q,C) ≤
P∑
k=1

cost(qW1
k
, cW2

k
)

We know that L ≤ P , so we can match every term on the LHS with a term
on the RHS, giving P − L terms unmatched.

LB TWED(Q,C) ≤
∑

k∈matched

cost(qW1
k
, cW2

k
) +

∑
k∈unmatched

cost(qW1
k
, cW2

k
)
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Let us consider the relationship between matched terms on the RHS and
the LHS terms. We wish to prove that for all i > 0, all the terms in Equation 13
are less than or equal to all the cost functions on the RHS. Due to boundary
conditions, TWED must align the points at i = 1, j = 1. So for i = 1 it is
trivial to see that,

min


(q1 − c1)2

q21 + v + λ

c21 + v + λ

≤
(q1 − c1)2

(q1 − 0)2 + vtQ1 + λ
(c1 − 0)2 + vtC1 + λ

There are three cases for i ≥ 2, and we shall start with the first one
qi > max(Cmax, qi−1), assuming Cmax ≥ qi−1 then qi > Cmax. We will first
show the proof by assuming (qi − Cmax)2 ≤ v.

– (qi−Cmax)2 ≤ (qi−cj)2+v|tQi −tCj |+(qi−1−cj−1)2+v|tQi−1−tCj−1| because

Cmax ≥ cj implies that cj is further from qi than Cmax, so (qi − Cmax)2 ≤
(qi − cj)2. All the other terms cannot be negative.

– (qi −Cmax)2 ≤ (qi − qi−1)2 + v|tQi − t
Q
i−1|+ λ because Cmax ≥ qi−1 implies

that qi−1 is further from qi than Cmax, so (qi − Cmax)2 ≤ (qi − qi−1)2. All
the other terms cannot be negative.

– (qi − Cmax)2 ≤ (cj − cj−1)2 + v|tCj − tCj−1| + λ because (qi − Cmax)2 ≤ v,

|tCj − tCj−1| > 0 and all the other terms cannot be negative.

Assuming v ≤ (qi−Cmax)2, v ≤ (qi−cj)2 because (qi−Cmax)2 ≤ (qi−cj)2.

v ≤ |tQi − t
Q
i−1| and v ≤ |tCj − tCj−1| because |ti− ti−1| > 0. Thus the proof still

holds.

For the case qi−1 ≥ Cmax then qi > qi−1, and assuming (qi − qi−1)2 ≤ v,
the opposite v ≤ (qi − qi−1)2 will still hold by applying the same reasoning.

– (qi−qi−1)2 ≤ (qi−cj)2 +v|tQi − tCj |+(qi−1−cj−1)2 +v|tQi−1− tCj−1| because
qi > qi−1, qi−1 ≥ Cmax and Cmax ≥ cj implies that cj is further from
qi than qi−1 so (qi − qi−1)2 ≤ (qi − cj)2. All the other terms cannot be
negative.

– (qi− qi−1)2 ≤ (qi− qi−1)2 + v|tQi − t
Q
i−1|+λ is trivial because all the terms

cannot be negative.
– (qi − qi−1)2 ≤ (cj − cj−1)2 + v|tCj − tCj−1| + λ because (qi − qi−1)2 ≤ v,

|tCj − tCj−1| > 0 and all the other terms cannot be negative.

A similar proof can be applied to the second case qi < min(Cmin, qi−1).
The third case is trivial as all of the costs are non-negative.

Since all the matched terms are larger than the LHS, the unmatched terms
have to be negative for the inequality to be false. Fortunately, this is not
possible because v ≥ 0, λ ≥ 0, |ti − tj | ≥ 0 and the squared terms can never
be negative. Therefore LB TWED(Q,C) ≤ TWED(Q,C) holds. ut
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4 FASTEE: FAST Ensembles of Elastic Distances

Given an elastic distance measure E, N training instances and M parameters
to learn, learning the best parameter for E can be seen as creating a N ×M
table, similar to Table 2, giving the NN for every time series for all parameters.
As demonstrated in (Tan et al., 2018), training just a single classifier (NN-
DTW) is very computationally expensive. This is even more problematic when
there are 11 classifiers to train. In this section, we introduce Fast Ensembles
of Elastic Distances (FastEE), an extension of FastWWS to speed up the
training time for EE.

4.1 Properties for FastEE

We can generalise the main properties of FastWWS to other elastic distances.
We let Pp, Pc and Pt be the alignment penalty, path constraint and threshold
parameter respectively.

Property #1: Any elastic distance measure E is monotone with its alignment
penalty constraint parameter Pp

Theorem 4 Let E be the elastic distance measure of interest, Q,C be two
time series, Pp be an alignment penalty, P̂p the smaller penalty and WPp

the
associated alignment path. Then we have EPp(Q,C) > EP̂p(Q,C).

Proof Let costPp(qi, cj) be the cost of aligning the two points qi and cj . If

Pp ≥ P̂p, then costPp(qi, cj) ≥ costP̂p(qi, cj). Otherwise, the alignment path
will not be optimum. ut

Property #2: For any elastic distance measure E, alignment path can be valid
for several path constraint parameter Pc

Theorem 5 Let E be the elastic distance measure of interest, Q,C be two
time series, Pc1 and Pc2 two path constraint parameters and WPc

1 and WPc
2

their associated alignment paths. WPc
1 =WPc

2 ⇒ EPc
1
(Q,C) = EPc

2
(Q,C). In

other words, EPc
1
(Q,C) can only differ from EPc

2
(Q,C) if the alignment path

differs.

Proof LetWPc
1 = 〈(iP

c
1

1 , j
Pc

1
1 ), · · · , (iP

c
1

K , j
Pc

1

K )〉,WPc
2 = 〈(iP

c
2

1 , j
Pc

2
1 ), · · · , (iP

c
2

K , j
Pc

2

K )〉.
We have:

EPc
1
(Q,C) =

∑K
k=1 costPp(q

i
Pc
1

k

, c
j
Pc
1

k

) Eq 10

=
∑K
k=1 costPp(q

i
Pc
2

k

, c
j
Pc
2

k

) (By hyp.)

=EPc
2
(Q,C)

ut
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Theorem 6 Let E be the elastic distance measure of interest, Q,C be two
time series, Pc be a path constraint, P̂c the smaller path constraint and WPc

the associated alignment path. Then

(|ik − jk| < Pc)∀k ⇒ EPc(Q,C) = EP̂c(Q,C)

In other words, if all the points in an alignment path are within the boundaries
of the path constraint Pc, then EPc(Q,C) = EP̂c(Q,C).

Proof All elastic distance measures find an alignment path WP
c

such that

K∑
k=1

costPp(qik , cjk)

is minimized respecting the constraint |ik − jk| 6 Pc. ut

In FastWWS, this property is known as the “window validity” (Tan et al.,
2018). Thus, similarly we say that EPc(Q,C) has a “path validity” and the
path is valid if all the alignment paths do not change. Note that this property is
valid only for a fixed alignment penalty parameter Pp and threshold parameter
Pt.

Property #3: Any elastic distance measure E is monotone with its path con-
straint parameter Pc

Theorem 7 Let E be the elastic distance measure of interest except TWED,
Q,C be two time series, and Pc a parameter of E, P̂c < Pc, we have EPc(Q,C) 6EP̂c(Q,C)
and TWEDPc(Q,C) > TWEDP̂c(Q,C).

Proof Assume EPc(Q,C) >EP̂c(Q,C), then this means that there exists an
alignment path WP̂c such that the associated cost is lower than the one for
WPc . This entails E not having found the optimal solution at Pc, which is a
contradiction. ut

Note that larger path constraint parameter for TWED, v gives larger dis-
tance which is the opposite of the path constraint parameters for all the other
elastic distances. Despite that, the proof is still applicable by just inverting
the signs.

Property #4: For any elastic distance measure E with a path constraint pa-
rameter Pc, its lower bound is monotone with Pc

Theorem 8 Let E be the elastic distance of interest except TWED, Q,C be
two time series, Pc a parameter of E, P̂c < Pc, and LB a lower bound of E, we
have LBPc(Q,C) 6 LBP̂c(Q,C) and LB TWEDPc(Q,C) > LB TWEDP̂c .
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Proof To prove this property, we have to look at each of the lower bounds for
distances with path constraint parameter – DTW, ERP, LCSS and TWED.
The proof for DTW can be found in (Tan et al., 2018). The lower bound for
ERP is an adaptation of LB Keogh for DTW. Thus, its proof is the same
as DTW.

The lower bound for LCSS is bounded by an upper UE and lower LE
envelopes. Let Pc = ∆, UE∆i = max(ci−∆ : ci+∆) + ε be the elements in the
upper envelope and LE∆i = min(ci−∆ : ci+∆) − ε as the lower envelope. We
wish to proof

LB LCSS∆(Q,C) 6 LB LCSS∆−1(Q,C)

We will assume the opposite and show that it leads to a contradiction:

LB LCSS∆(Q,C) > LB LCSS∆−1(Q,C)

1− 1

L

L∑
i=1

{
1 if LE∆i ≤ qi ≤ UE∆i
0 otherwise

> 1− 1

L

L∑
i=1

{
1 if LE∆−1i ≤ qi ≤ UE∆−1i

0 otherwise

L∑
i=1

{
1 if LE∆i ≤ qi ≤ UE∆i
0 otherwise

<

L∑
i=1

{
1 if LE∆−1i ≤ qi ≤ UE∆−1i

0 otherwise

The above implies that larger envelope at Pc gives a larger lower bound
distance than smaller envelopes, which contradicts with Equation 21 that de-
fines LB LCSS as the percentage of points that are inside the envelope. When
Pc increases, the envelope gets larger, thus more points from Q will fall into
the envelope. Hence, the number of qi points in the larger envelopes will be
larger than the smaller envelopes giving longer common subsequence and con-
sequently a smaller distance.

TWED monotonically increases with its path constraint parameter Pc = v
and we let v′ < v. Since v > v′ and the rest of the Equation 13 is constant
regardless of v, it is trivial to see that the inequalities for all the terms in
Equation 13 holds.

LB TWEDv(Q,C) > LB TWEDv′(Q,C)

min


(q1 − c1)2

q21 + v + λ

c21 + v + λ

> min


(q1 − c1)2

q21 + v′ + λ

c21 + v′ + λ

L∑
i=2


min(v, (qi −A)2) if qi > A

min(v, (qi −B)2) if qi < B

0 otherwise

>
L∑
i=2


min(v′, (qi −A)2) if qi > A

min(v′, (qi −B)2) if qi < B

0 otherwise

where A = max(Cmax, qi−1), B = min(Cmin, qi−1). ut
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Property #5: For any elastic distance measure E with a penalty parameter Pp,
its lower bound is monotone with Pp

Theorem 9 Let E be the elastic distance measure of interest, Q,C be two
time series, Pp a parameter of E, P̂p < Pp, and LB a lower bound of E, we
have LBPp(Q,C) > LBP̂p(Q,C).

Proof Since the penalty parameter Pp ≥ 0 and all lower bounds for elastic
distances are additive, it is trivial that LBPp(Q,C) > LBP̂p(Q,C) because

Pp > P̂p ut

Property #6: For any elastic distance measure E with a threshold parameter
Pt, its lower bound is monotone with Pt

Theorem 10 Let E be the elastic distance measure of interest, Q,C be two
time series, Pt a parameter of E, P̂t < Pt, and LB a lower bound of E, we
have LBPt(Q,C) > LBP̂t(Q,C).

Proof Considering the elastic distance measures used in this work, only the
LCSS distance has the threshold parameter, thus the proof will be based on
LB LCSS. Let Pt = ε, LB LCSS is bounded by an upper UEi = max(ci−∆ :
ci+∆)+ε and lower LEi = min(ci−∆ : ci+∆)−ε envelopes which is built based
on ε. From Equation 21, LB LCSS is defined as the percentage of points
that are inside the envelope. When Pt increases, the envelope gets larger, thus
more points from C will fall into the envelope. Hence, the number of points
in the larger envelopes will be larger than the smaller envelopes giving longer
common subsequence and consequently a smaller distance. ut

Figure 5 and 6 illustrate the combination of all the properties for each of the
elastic distances. In this work, to be consistent with EE, only 100 parameters
are chosen for each of the distances (Bagnall et al., 2017). Figure 5 shows the
properties for elastic distances with a single parameter, while Figure 6 with two
parameters. For distances with two parameters, 10 values are chosen uniformly
for each of the parameters, creating a combination of 100 parameter values.
There are no distances used with three parameters. Note that the nearest
neighbour (lowest distance) changes as the parameter changes.

The DTW family, DTW, DDTW, WDTW and WDDTW monotonically
decrease with increasing parameter as shown in Figure 5a, 5b, 5c and 5d.
Figure 5c and 5d only show 15 parameters as the WDTW distances are very
small for larger parameters. The parameter for DTW and DDTW – warping
window r is selected from the range [0, L]. The parameter g for WDTW and
WDDTW is chosen from an uniform distribution of U(0, 1) with 100 values.
On the other hand, MSM monotonically increases with its parameter as shown
in Figure 5e. Its parameter c is sampled from an exponential sequence in the
range [0.01, 100] (Bagnall et al., 2017).

For distances with two parameters, starting with LCSS, LCSS has a mono-
tonically decreasing relationship with its parameters as shown in Figure 6a.
The threshold parameter for LCSS, ε is chosen from the range [σ/5, σ] where
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Fig. 5: Relationship between single parameter elastic distances and parameters

σ is the standard deviation of the training set. The path constraint parameter,
δ is chosen from the range of [0, L/4] (Bagnall et al., 2017). Figure 6b shows
the monotonically increasing relationship of TWED and its parameters. The
constraint parameter for TWED, v is chosen from an exponential distribution
ranging from

[
10−5, 1

]
. The penalty parameter λ is chosen uniformly from the

range [0, 0.1]. ERP distance increases when its alignment penalty g increases
and decreases when its path constraint, bandsize increases as shown in Fig-
ure 6c. Both of its parameters are chosen the same way as LCSS.
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Fig. 6: Relationship between double parameter elastic distances and their pa-
rameters

4.2 Ordering of parameter values

Ordering the parameter values is important in improving the efficiency of the
training algorithm. For instance, FastWWS starts from the largest warping
window from to the smallest, as the larger window can be used as a lower
bound to prune the computations for the smaller window (Tan et al., 2018).
FastEE starts scanning the parameter values for DTW, DDTW, WDTW
and WDDTW from the largest to the smallest. Distances with the larger
parameter values can be used as a lower bound for the smaller parameter val-
ues, which is often tighter and more effective than the lower bound computed
with the larger parameter. Both DTW and DDTW distances are constant
at larger windows as illustrated in Figure 5a and 5b. This has the effect of
pruning the computations for DTW and DDTW at the windows where they
are constant. The sigmoid weight function makes WDTW and WDDTW a
continuous function as illustrated in Figure 5c and 5d, preventing them from
having a constant value. Since it does not satisfy property 2, the computations
of WDTW cannot be pruned. For this reason, FastEE will only make use of
the distances computed at a larger g as the lower bounds for smaller g. Lower
bounds for WDTW are also used to speed up the process.
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As MSM has a monotonically increasing relationship with its parameter
c, FastEE starts from the smallest c – using distances at smaller c as a lower
bound for larger c. Note that at larger c, MSM is constant and thus the
computations can be pruned.

The spikes in Figure 6 correspond to the changeover of a new penalty
and threshold parameter for elastic distances with two parameters. Currently,
FastEE resets the scan at the spikes. We note that it is possible to use the
distances at larger penalty value as the lower bound to a smaller penalty value
but this exploration will be left for future work.

FastEE starts from the largest parameter combination (∆, ε) for LCSS.
For a fixed ε, LCSS distance stays constant for a range of ∆. Thus the com-
putation can be pruned when the distance is constant. Smaller threshold ε
means that fewer points will be a match and thus distance will be larger.
Hence, LCSS distance at larger ε can be used as the lower bound at smaller
ε.

For TWED, FastEE starts scanning from the smallest parameter combi-
nation (v, λ). It is interesting to see that in Figure 6b, TWED is continuous
at smaller v and does not satisfy property 2. However, it remains constant at
larger v. Hence FastEE is still applicable to TWED but will not yield good
speed up at these smaller v.

Figure 6c shows that the ERP distance decreases with increasing bandsize,
FastEE starts searching from the largest parameter combination and resets
at every new g. Larger g corresponds to larger penalty and thus larger ERP
distance. It is important to note that ERP at bandsize = 0 has the same
value regardless of g which means that we can reuse this value.

4.3 The FastEE algorithms

The previous sections show the theoretical basis of our work. We are now in a
better position to explain our algorithms. The FastEE algorithm applies the
strategy that underlies FastWWS (Tan et al., 2018) to all the components of
EE. Like FastWWS, FastEE is an exact algorithm that is capable of giving
the exact best parameter (with respect to LOO evaluation on the training
data) and can also be applied to a subset of parameters. To take advantage of
all the properties of FastEE, we order the computations across the columns
of the NNs table systematically for each distance measure, as described in
Section 4.2. This allows FastEE to prune most of the computations across
the columns of the table.

4.3.1 Lazy Nearest Neighbour Assessment

Our LazyAssessNN algorithm, presented in Algorithm 3, generalizes Fast-
WWS so that it can be used for all EE’s elastic distance measures. It assesses
whether a pair of time series can be less than a distance d apart for a given pa-
rameter P. LazyAssessNN assesses each of the potential nearest neighbours
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Algorithm 3: LazyAssessNN(C(Q,C),P, d,Q,C)

Input: C(Q,C): cache storing the previous measure between Q and C
Input: P: parameter
Input: d: the distance to beat
Input: Q,C: the time series to measure
Result: EP (Q,C) if 6 d, else pruned

1 if C(Q,C) = ∅ then C(Q,C) ← init(Q,C)

2 switch C(Q,C).stoppedAt do

// LB calculated with a previous parameter P̂
3 case EP̂ do
4 if w ∈ C(Q,C).valid ∧ C(Q,C).value < d then
5 return C(Q,C).value

6 end

7 case LBP̂ do
8 if C(Q,C).value > d then return pruned

9 otherwise do
// Calculate LB and E at parameter, P
// Possible to cascade LBs for more than 1 lower bound starting

from the lowest complexity

10 C(Q,C) ← LBP (Q,C)

11 if C(Q,C).value > d then return pruned

12 C(Q,C) ← EP (Q,C)

13 if C(Q,C).value > d then return pruned

14 return C(Q,C).value

15 end

16 end

in a lazy fashion, by making the most out of all possible lower bounds. It is
lazy in that it postpones calculations for as long as possible. The ordering of
the elastic distance measure computations from small to large allows any value
previously calculated to become a lower bound to the current parameter. A
cache C is used to store the results from the previous parameter.

First, we have to initialise the cache if it was not initialised previously. For
most elastic distance measures, the initialisation is simply creating the cache.
But for DTW, DDTW and ERP the cache is initialised with the LB Kim
distance. The reason is that LB Kim is not well-defined for the other distances.
LB Kim is the loosest and cheapest lower bound to compute. It is sufficient to
filter out the obvious unpromising candidates in the training set T . Then we
test where the cache last stopped, i.e. was it computing a lower bound for the
target parameter P, was it computing a lower bound for previous parameter
P̂, or was it computing a distance for previous parameter EP̂ . If it stopped
at EP̂ , then we have to assess if EP̂ is still valid and having a value less
than d. On line 7-9, if we cannot prune with EP̂ , then we check if we can
prune using previously computed bounds. Otherwise, we have to compute the
lower bound for the target parameter and test if we can prune them. Note
that we can cascade the bounds for distances with more than one bound. The
bounds are ordered by their complexity which usually corresponds to their
tightness (Rakthanmanon et al., 2012; Tan et al., 2018). In this work, we
cascade DTW lower bounds in the order – LB Kim(Q,C), LB Keogh(Q,C)
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Algorithm 4: FastEE(T , C)

Data: T : training data with size N
Data: C: set of NN classifier paired with an elastic distance
Result: P?: array of best parameter for each distances
Result: bestAccuracy: best LOO-CV accuracy for each distances

1 P? ← ∅
2 foreach ci ∈ C do
3 Pi ← {Pi1, ...,PiM}
4 NNs← ci.FastFillNNTable(T ,Pi)
5 bestNCorrecti ← −1

6 for Pip ← Pi1 to PiM do
7 nCorrect← 0
8 foreach Qq ∈ T do
9 if NNs[q][p].class 6= Qq .class then

10 nCorrect++
11 end

12 end
13 if nCorrect > bestNCorrecti then
14 bestNCorrecti ← nCorrect

15 P?i ← Pip
16 end

17 end
18 bestAccuracyi ← bestNCorrecti/|T |
19 end

and LB Keogh(C,Q). Reversing the role of Q and C in LB Keogh can
sometimes provide better bounds (Rakthanmanon et al., 2012). Finally if all
bounds failed to prune the candidate, then we have to compute EP – the
elastic distance measure E at the target parameter P.

4.3.2 FastEE Algorithm

Recall that the problem of learning the best parameter for an elastic distance
measure, E can be re-framed into creating a (N ×M) NNs table, which gives
the NN of every time series in the training set for all M parameters. Such
a table is depicted in Table 2 (in Section 2.3). This provides the memory
complexity of our FastEE algorithm, O(N ×M). Once this table is built,
the best parameter value can be learned in one pass over it as described in
Algorithm 4. Algorithm 5 is used to fill the table and returns the parameter
value with the highest LOO-CV accuracy on the training set T of size N .

The core of FastEE actually depends on how efficient we can compute this
table. Algorithm 5 describes how we build this table efficiently for a particular
elastic distance measure. At the highest level, the algorithm builds this table
for a subset T ′ ⊆ T of increasing size until T ′ = T . For example we start by
building the table for T comprising of only time series C1 and C2 and fill the
table as if T is the entire dataset. It is trivial to see that C1 is the nearest
neighbour for C2 and vice versa. Then a third time series C3 is added to the
set T ′ from T \ T ′. Now we have to find the nearest neighbour for C3 from
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Algorithm 5: FastFillNNTable(T , P̄)

Input: T the set of time series
Input: P̄ ordered parameters to scan
Result: NNs[N ][M ] the nearest neighbors table

1 Define LANN as LazyAssessNN
2 NNs.fillAll ( ,+∞)
3 T ′ ← ∅
4 for q ← 2 to N do
5 Q← Tq
6 T ′ ← T ′ ∪ {Tq−1}
7 foreach C ∈ T ′ do CQ,C ← ∅
8 for p←M down to 1 do
9 if NNs[q][p] 6= ∅ then

// Update table NNs[c][p]16c6q−1

10 for tc← 1 to q − 1 do
11 toBeat← NNs[c][p].distance
12 res← LANN(C(Q,Cc), P̄p, toBeat, Q,Cc)

13 if res 6= pruned then
14 NNs[c][p]← (Q, res)
15 end

16 end

17 else
// Check Q against previous C ∈ T ′

18 foreach C ∈ T ′ in asc. order using C do
19 toBeat← NNs[q][p].distance
20 res← LANN(C(Q,C), P̄p, toBeat, Q,C)

21 if res 6= pruned then
22 NNs[q][p]← (C, res)
23 end
24 toBeatC← NNs[c][p].distance
25 resC← LANN(C(Q,C), P̄p, toBeatC, Q,C)

26 if resC 6= pruned then
27 NNs[c][p]← (Q, resC)
28 end

29 end
// Propagate NN for all valid parameters

30 for p′ ∈ NNs[q][p].valid do NNs[q][p′]← NNs[q][p]

31 end

32 end

33 end

T ′ \ C3 = {C1, C2} and check if C3 is the nearest neighbour for both C1 and
C2. This process is repeated until T ′ = T .

Algorithm 5 starts by initialising the N ×M , NNs table to ( ,+∞). This
means that the table is empty and the distances are +∞. The iteration starts
from 2 in line 4 as there need to be at least 2 time series. Lines 5 to 7 are
some initialisations including creating the cache associated with Q to store the
results. After initialisation, we start the NN search with the set of parameters
P̄p in the order mentioned in the previous section. Then in line 9, we check if
Q already has a NN found from previous parameters. If Q already has a NN,
then we only need to check if Q is the NN for the other time series in T ′. At
this point, the LazyAssessNN algorithm assess if Q “beats” the previous NN
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Fig. 7: Average tightness of DTW lower bounds for the ArrowHead dataset
(better seen in color)

for each of the time series in T ′. If LazyAssessNN exits with pruned then
it means that Q is not the NN, otherwise the NNs table has to be updated
with Q as the new NN.

If we do not have the NN for Q from the previous parameter value, then we
will need to analyse all (Q,C)C∈T ′ and update the NNs table simultaneously
for Q and C. At this stage, we already have some information stored in the
cache C about which C ∈ T ′ might be a better NN candidate for Q. Note that
the number of computations will be minimised if the first C is actually the
NN of Q. Hence, it is important to first assess the candidate with the highest
NN potential by ordering the candidates. This method has been previously
studied in (Tan et al., 2017) and used in FastWWS (Tan et al., 2018).

As mentioned in (Tan et al., 2018), it is possible that C contains different
type of lower bounds leading to distances with different magnitude. Thus the
lower bounds have to be normalised. Most of the lower bounds for the elastic
distance measures are of O(L) complexity, so we normalise them by the number
of point-wise calculations. Elastic distance measures are then being normalised
by a factor of 0.8/L which gives higher priority to the time series where an
actual elastic distance has been computed, rather than a lower bound distance.
This is because the distance at the previous parameter, EP̂ represents a better
estimate of the distance at the current parameter, EP than its lower bound. An
example shown in Figure 7, comparing different DTW lower bounds, shows
that using DTW computed from the larger window is tighter than all other
existing lower bounds (Keogh and Ratanamahatana, 2005; Kim et al., 2001;
Lemire, 2009; Tan et al., 2019).

Line 19 gives the distance threshold from NNs[q][p] which each candidate
has to beat in order to be the NN of Q. The candidate is assessed using the
LazyAssessNN algorithm in Algorithm 3. Initially, this value will be ∞ as
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NNs[q][p] = ∅ and a distance computation has to be done which will then
be stored into NNs[q][p] in line 22. Then we check if Q is the NN of each
candidate C ∈ T ′. Finally after all C ∈ T ′ have been processed, NNs[q][p]
contains the actual NN of Q at the parameter value Pp. This information is
then propagated across all P where the distance is valid.

5 Empirical evaluations

This section describes the experiments that evaluate our FastEE algorithm.
Our experiments were performed using all the 85 freely available benchmark
UCR time series datasets (2015 version) and the original train/test split (Chen
et al., 2015). We performed a search over the 100 parameters specified in
Section 4.1. We conducted all of our experiments on a 16 core Xeon-E5-2667-v3
@3.20GHz machine with 16GB RAM. Our source code has been made open-
source at https://github.com/ChangWeiTan/FastEE and the full results at
http://bit.ly/FastEE.

5.1 Speed-up against EE

We first perform an experiment comparing FastEE to the following:

– EE (Lines and Bagnall, 2015): The standard implementation of the EE
classifier. This näıve version is used as the baseline. We use the code from
(Lines and Bagnall, 2015).

– LBEE: EE with lower bounds. This is the improvised version of näıve
EE. It uses lower bounds for the elastic distance measures in all the NN
search. NN search with lower bound has a lot of success with speeding
up NN-DTW (Keogh and Ratanamahatana, 2005; Rakthanmanon et al.,
2012).

All methods are exact – they all learn the same best parameter, the same
LOO-CV accuracy and thus the same classification accuracy. This is shown in
Figure 13b which shows the classification accuracy of FastEE compared to
EE. Hence our experiments are more focused on the training time.

Figure 8 compares the training time of EE (x-axis) to LBEE and FastEE.
Points under the red line indicate that the method is faster than standard EE.
The result shows that FastEE is faster than the standard implementation of
EE with all the red points consistently under the red line. The critical differ-
ence diagram, with α = 0.05 in Figure 9 shows that the result is significant.
Although Figure 9 shows that LBEE (using lower bounds on the elastic dis-
tance measures) is significantly faster than EE, the scatter plot in Figure 8
shows that the speed-up gain is minimal and sometimes worse than EE. This
is a surprising result because lower bounds have proven to be successful in
speeding up many NN-DTW tasks (Keogh and Ratanamahatana, 2005; Rak-
thanmanon et al., 2012; Tan et al., 2017) and we expect it to have significant

https://github.com/ChangWeiTan/FastEE
http://bit.ly/FastEE
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and FastEE (Demšar, 2006). The number besides the classifiers represents
the average rank of the variant from 85 benchmark time series datasets (Chen
et al., 2015). Classifiers are significantly different if the difference between the
average rank is larger than the critical difference

improvements. We believe that there are two main reasons for this. For simplic-
ity, we will explain the reasons using the DTW distance. The same reasoning
applies to all other elastic distance measures as well.

First is due to the tightness of the lower bounds which is highly dependent
on the parameters, especially the path constraint parameter. All lower bounds
used in this work are similar to LB Keogh. They build an envelope to encap-
sulate the candidate time series (shown in Figure 16b), and sum the distances
of all the points in the query time series that fall outside of the envelope. They
are designed to ensure that if a point of a query time series that is outside of
the envelope is compared to either the upper or lower envelope, the distance
between them must at least contribute to the actual distance computation. For
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instance, the path constraint parameter affects the envelope in the horizon-
tal direction, i.e. larger path constraint makes the envelope wider and bigger.
Similarly larger penalty or threshold parameter increases the vertical direc-
tion, making the envelope taller and bigger. If the envelope is bigger, fewer
points will be outside of the envelope. As a consequence, the lower bound has
a smaller distance and thus decrease in tightness.

This is illustrated in Figure 10a, which compares the training time for
NN-DTW and NN-DTW with LB Keogh at different parameters. Initially,
LB Keogh is effective at small warping windows but loses its effectiveness in
pruning NN candidates as the warping window gets larger. In other words,
computing lower bounds for DTW at these larger windows becomes redun-
dant. A similar result is observed for the other elastic distance measures.

Second, using lower bounds across the columns of the NNs table is not
efficient as they loses their tightness and need to be recomputed multiple times.
As shown in Figure 4 and Figure 5a, DTW distance monotonically increases
as the warping window decreases and is constant for a wide range of warping
windows. This allows FastEE to use DTW from larger windows as the lower
bound for a smaller window to skip as many computations as possible and
preventing from recomputing DTW at parameters that give the same value.
LBEE does not make use of this information and thus has to recompute the
distances multiple times. As a consequence of these two reasons, when all the
distances are combined, on average the training time of EE does not improve
as shown in Figure 10b.

5.2 Can we do better than FastEE?

Training FastEE is at most 10 times faster than the standard EE. This brings
up the question of whether we can further reduce the training time of FastEE.

Figure 11 shows the average contribution of each elastic distance measure
to EE’s total training time across the UCR benchmark archive (Chen et al.,
2015). TWED, MSM and WDDTW are the three distances that contribute
the most to the training time of EE and LBEE. FastEE significantly reduces
the training time of MSM, which leaves WDDTW, WDTW and TWED the
top three for FastEE.

Recall that learning the best parameter for each elastic distance measures is
typically done with LOO-CV and can be re-framed as filling up a N ×M NNs
table. This means that for each C ∈ T , we search for its nearest neighbour from
T \C. However, it is possible that we do no need the full N instances to learn
the best parameter. In other words, we want to estimate the best parameter
(which could be slightly different) based on a few instancesN from the training
set without compromising the classification accuracy. Hence, instead of N×M ,
we wish to build a N ×M NNs table where N � N . This has the consequence
of speeding up the training time since less training instances are examined.

A similar method has been proposed to speed up the training time of
a classifier (Flynn et al., 2019). The authors proposed a contract algorithm
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Fig. 10: (a) Training time of DTW and DTW with LB Keogh (b) EE and
LBEE on the ProximalPhalanxOutlineAgeGroup dataset (Chen et al., 2015)

to build the Random Interval Spectral Ensemble (RISE) classifier without
compromising the classification accuracy. The authors estimate the interval r
in RISE, based on the remaining contract time. They used a least squares linear
regression model, which models the relationship of the interval r with training
time. Note that it is possible to implement a contract version of FastEE but
this will be left for future work.

In this work, we propose a simple technique to approximate the LOO-CV
process while not affecting the classification accuracy. Our technique – Ap-
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Fig. 11: Contributions from each elastic distance measures to the total training
time

proxEE builds a N ×M table but using the full training set, T of size N .
That is, we assess all the M parameters with respect to a random subset of
the full training set T ′ ⊂ T . T ′ comprises of N instances sampled uniformly
at random from T . For each series in T ′, we still find the nearest neighbour
within the full training set T . Thus we are keeping the original objective func-
tion, but estimating it from a sample of observations. This ensures that the
nearest neighbour for each of the N instances is the same as exact LOO-CV –
giving a better estimate of the parameters. Currently only the three distances
– TWED, WDTW and WDDTW are approximated as they contribute the
most to the training time of FastEE. Approximating other distances is pos-
sible but the effect will not be great because they do not contribute much to
the total training time.

We report the average training time and classification accuracy of Ap-
proxEE with N = {2, 3, 4, 5, 10} over 5 runs and we write ApproxEEN .
Note that N = 1 was not tested because it does not make sense to train with
just a single instance. We note that selecting a small N might potentially cause
class imbalance but we will show empirically over multiple runs that there is
no significant reduction in the classification accuracy. However if class imbal-
ance is an important problem or if using a metric more sensitive to imbalance
(ie not accuracy), one might want to consider another sampling method closer
to a stratified one for the rows.

Figure 12a compares the speed up of ApproxEE against EE across all the
UCR benchmark datasets (Chen et al., 2015) for all N . The result is expected
as more time is required for training as N tends to N . This is indicated by
the decreasing median (red line in the middle of the box plot) over multiple
N . Note that the training time across all the N is not significantly different.
Since ApproxEE estimates the exact best parameter and the training time is



FastEE: Fast Ensembles of Elastic Distances for Time Series Classification 37

2 3 4 5 10

N

5

10

15

20

25

30

35

40

S
p
e
e
d
u
p
 -

- 
E
E
 /

 A
p
p
ro

x
E
E

N

(a)

2 3 4 5 10

N

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 f
o
r 

A
p
p
ro

x
E
E

N

(b)

Fig. 12: (a) Speedup against EE and (b) Classification accuracy for Ap-
proxEE across all the UCR benchmark datasets (Chen et al., 2015) for all
the N

similar for allN , we are interested to know the effect on classification accuracy.
Figure 12b compares the classification accuracy of ApproxEE across all the
85 UCR benchmark datasets (2015 version) (Chen et al., 2015) for all N . The
result shows that there is no significant difference for all N . This suggests that
a small N is sufficient to provide a good speed up to both FastEE and EE
without compromising the classification accuracy.
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Therefore, we choose N = 2 and compare ApproxEE2 to FastEE. Fig-
ure 13a compares the total training time of ApproxEE2 to FastEE. It
shows that ApproxEE2 is always much faster than FastEE. This is ex-
pected because N � N . The largest speed-up gained from ApproxEE2 is
40 times on the ElectricDevices dataset where FastEE is only 10 times
faster than EE. The critical difference diagram illustrated in Figure 14, shows
that ApproxEE2 is significantly faster than FastEE, LBEE and EE.

Finally we show the classification accuracy of the different EE classifiers
in Figure 13b. As expected, the classification accuracy of LBEE and FastEE
is exactly the same as EE because they are exact, i.e. finding the same best
parameter and training accuracy. The classification accuracy of ApproxEE
is not significantly different from EE, as most of the points fall very closely on
the red diagonal line and shown in the critical difference diagram in Figure 15.

If N is sufficiently large, the best parameter estimated can be similar to
learning with the full N time series but much faster. Then the estimated LOO-
CV accuracy will be closer to the exact LOO-CV accuracy and thus does not
significantly affect the final classification. However for very small N , it is very
likely that the NN classifier will not learn the best parameter. This is because
the estimated LOO-CV accuracy can only be 0, 0.5 or 1 ifN = 2. This suggests
that the classifiers in EE with approximate LOO-CV do not contribute much
in classification accuracy.

The results from this experiment suggest that it is possible to ignore an
elastic distance in EE without compromising on the classification accuracy. It
is possible that EE does not need all 11 elastic distance measures to achieve
such high classification accuracy. The exploration of this possibility is left for
future work.

6 Conclusion

We propose the FastEE algorithm – an extension of FastWWS to the other
elastic distance measures. New lower bounds have also been proposed for
elastic distances without a previous bound, specifically WDTW, MSM and
TWED. Lower bounds help in reducing the search space and are critical to
the FastEE algorithm. Our results showed that FastEE is significantly faster
than the standard implementation of EE and LBEE which uses lower bounds.
To our surprise, we did not find any significant speed up in using a lower bound
search to speed up the training time of EE. The main reasons are due to the
inefficiency of computing the lower bound across all the parameters and that
the tightness of the lower bounds degrades as the parameters change.

We also showed that it is possible to do an approximate LOO-CV pro-
cess to select parameters for computationally expensive measures WDDTW,
WDTW and TWED without significantly impacting accuracy. The approxi-
mation is done by learning from a subset N of the full training set T of size N .
We showed that even a small N is sufficient to provide similar classification
accuracy while being 40 times faster. Although the approximate version can
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Fig. 13: Average (a) training time of FastEE and ApproxEE2 and (b) clas-
sification accuracy of the different EE classifiers over 5 runs

be applied to all the other elastic distance measures, as the computation is
less intensive the speed-up will be much less and we leave it for future work.

It is interesting to note that our work on Proximity Forest (PF) (Lucas
et al., 2019) is more competitive than EE, which raises a question about the
potential of the solutions introduced in this paper. We see the contributions
in this paper to be orthogonal to the ones in PF: we introduced new lower
bounds to 11 similarity measures as well as fast algorithms to cross-validate
their parameters. PF showed that the use of sound metrics for time series
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the different EE variants

is critical and most of its accuracy rests of the decades of research in that
field. Technically, the contributions of this paper could actually be integrated
within PF to make it faster and/or more accurate. For example, in PF, at
every node, time series have to be compared to a set of reference time series
(exemplars). For that task, our work on lower bounding EE’s 11 measures
would be very useful, because PF uses the same set of measures. PF also uses
randomization of the parameters of the measures, as opposed to learning them
with EE through cross-validation. The result is that a large number of trees
are necessary in the ensemble to hep with potential bad choices of parameters.
We believe that the tricks used in FastEE could be used at the node level
directly to narrow down the set of parameters from which random values could
be chosen.

Our future work also includes the exploration of the possibility of using
fewer classifiers in EE, exploring the different alternatives for learning the
parameters of EE, indexing the training set and applying a contract time for
training. The results presented in this work are important because if these
NN classifiers in EE can be trained in a shorter time, then HIVE-COTE
(the most accurate TSC algorithm) can also be made faster and more feasible.
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Demšar J (2006) Statistical comparisons of classifiers over multiple data sets.
J Mach Learn Res 7:1–30

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying
and mining of time series data: experimental comparison of representations
and distance measures. In: Proceedings of the 34th international conference
on very large data bases (VLDB), pp 1542–1552

Flynn M, Large J, Bagnall T (2019) The contract random interval spectral
ensemble (c-RISE): the effect of contracting a classifier on accuracy. In:
Proceedings of 2019 international conference on hybrid artificial intelligence
systems (HAIS), pp 381–392

Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2014) Classification of
time series by shapelet transformation. Data Min Knowl Discov 28(4):851–
881

Inglada J, Arias M, Tardy B, Hagolle O, Valero S, Morin D, Dedieu G, Sepulcre
G, Bontemps S, Defourny P, Koetz B (2015) Assessment of an operational
system for crop type map production using high temporal and spatial reso-
lution satellite optical imagery. Remote Sens 7(9):12356–12379

Inglada J, Vincent A, Arias M, Marais-Sicre C (2016) Improved early crop
type identification by joint use of high temporal resolution sar and optical
image time series. Remote Sens 8(5):362

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/


42 Chang Wei Tan et al.

Itakura F (1975) Minimum prediction residual principle applied to speech
recognition. IEEE Trans Acoust, Speech, Signal Process 23(1):67–72

Jeong YS, Jeong MK, Omitaomu OA (2011) Weighted dynamic time warping
for time series classification. Pattern Recogn 44(9):2231–2240

Keogh E, Ratanamahatana C (2005) Exact indexing of dynamic time warping.
Knowl Inf Syst 7(3):358–386

Keogh EJ, Pazzani MJ (2001) Derivative dynamic time warping. In: Proceed-
ings of the 2001 SIAM international conference on data mining (SDM), pp
1–11

Kim SW, Park S, Chu WW (2001) An index-based approach for similarity
search supporting time warping in large sequence databases. In: Proceedings
of the 17th international conference on data engineering (ICDE), pp 607–614

Lemire D (2009) Faster retrieval with a two-pass dynamic-time-warping lower
bound. Pattern Recogn 42(9):2169–2180

Lines J, Bagnall A (2015) Time series classification with ensembles of elastic
distance measures. Data Min Knowl Discov 29(3):565–592

Lines J, Taylor S, Bagnall A (2016) HIVE-COTE: The hierarchical vote collec-
tive of transformation-based ensembles for time series classification. In: Pro-
ceedings of the 16th IEEE international conference on data mining (ICDM),
pp 1041–1046

Lucas B, Shifaz A, Pelletier C, O’Neill L, Zaidi N, Goethals B, Petitjean F,
Webb GI (2019) Proximity forest: an effective and scalable distance-based
classifier for time series. Data Min Knowl Discov 33(3):607–635

Marteau PF (2009) Time warp edit distance with stiffness adjustment for time
series matching. IEEE Trans Pattern Anal Mach Intell 31(2):306–318

Petitjean F, Inglada J, Gançarski P (2012) Satellite image time series analysis
under time warping. IEEE Trans Geosci Remote Sens 50(8):3081–3095

Petitjean F, Forestier G, Webb GI, Nicholson AE, Chen Y, Keogh E (2014)
Dynamic time warping averaging of time series allows faster and more accu-
rate classification. In: Proceedings of the 2014 IEEE international conference
on data mining (ICDM), pp 470–479

Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q,
Zakaria J, Keogh E (2012) Searching and mining trillions of time series
subsequences under dynamic time warping. In: Proceedings of the 18th ACM
SIGKDD international conference on knowledge discovery and data mining
(SIGKDD), pp 262–270

Ratanamahatana C, Keogh E (2005) Three myths about DTW data mining.
In: Proceedings of the 2005 SIAM international conference on data mining
(SDM), pp 506–510

Ratanamahatana CA, Keogh E (2004) Making time-series classification more
accurate using learned constraints. In: Proceedings of the 2004 SIAM inter-
national conference on data mining, pp 11–22

Sakoe H, Chiba S (1971) A dynamic programming approach to continuous
speech recognition. In: Proceedings of the 7th international congress on
acoustics, Budapest, Hungary, vol 3, pp 65–69



FastEE: Fast Ensembles of Elastic Distances for Time Series Classification 43

Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization
for spoken word recognition. IEEE Trans Acoust, Speech, Signal Process
26(1):43–49

Shen Y, Chen Y, Keogh E, Jin H (2018) Accelerating time series searching
with large uniform scaling. In: Proceedings of the 2018 SIAM international
conference on data mining (SDM), pp 234–242

Silva D, Batista G (2016) Speeding up all-pairwise dynamic time warping ma-
trix calculation. In: Proceedings of the 2016 SIAM international conference
on data mining (SDM), pp 837–845

Srikanthan S, Kumar A, Gupta R (2011) Implementing the dynamic time
warping algorithm in multithreaded environments for real time and unsuper-
vised pattern discovery. In: Proceedings of the 2nd international conference
on computer and communication technology (ICCCT), pp 394–398

Stefan A, Athitsos V, Das G (2013) The move-split-merge metric for time
series. IEEE Trans Knowl Data Eng 25(6):1425–1438

Tan CW, Webb GI, Petitjean F (2017) Indexing and classifying gigabytes of
time series under time warping. In: Proceedings of the 2017 SIAM interna-
tional conference on data mining (SDM), pp 282–290

Tan CW, Herrmann M, Forestier G, Webb GI, Petitjean F (2018) Efficient
search of the best warping window for dynamic time warping. In: Proceed-
ings of the 2018 SIAM international conference on data mining (SDM), pp
225–233

Tan CW, Petitjean F, Webb GI (2019) Elastic bands across the path: a new
framework and methods to lower bound DTW. In: Proceedings of the 2019
SIAM international conference on data mining (SDM), pp 522–530

Vlachos M, Kollios G, Gunopulos D (2002) Discovering similar multidimen-
sional trajectories. In: Proceedings of the 18th international conference on
data engineering (ICDE), pp 673–684

Vlachos M, Hadjieleftheriou M, Gunopulos D, Keogh E (2003) Indexing multi-
dimensional time-series with support for multiple distance measures. In: Pro-
ceedings of the 9th ACM SIGKDD international conference on knowledge
discovery and data mining (SIGKDD), pp 216–225

Yi BK, Jagadish H, Faloutsos C (1998) Efficient retrieval of similar time se-
quences under time warping. In: Proceedings of the 14th international con-
ference on data engineering (ICDE), pp 201–208



44 Chang Wei Tan et al.

First

Last

Maximum

Minimum

(a) (b)

Fig. 16: Illustration of (a) Kim and (b) Keogh lower bound

A Existing lower bounds for elastic distances

A.1 DTW lower bounds

Being the most popular elastic distance, lower bound for DTW has been widely studied
(Keogh and Ratanamahatana, 2005; Kim et al., 2001; Lemire, 2009; Shen et al., 2018; Yi
et al., 1998). Note that DDTW is a variant of DTW, so the lower bounds for DTW are
directly applicable to DDTW.

The simplest and loosest DTW lower bound is the Kim lower bound (LB Kim) described
in Equation 14 (Kim et al., 2001). LB Kim uses the maximum differences of the maximum,
minimum, first and last points of Q and C as the lower bound for DTW. With initialisation,
LB Kim can be computed very quickly with O(1) time. Although a looser lower bound, it is
still effective in filtering out the obvious unpromising candidates. Figure 16a illustrates this
lower bound.

LB Kim(Q,C) = max


|q1 − c1|
|qL − cL|
|max(Q)−max(C)|
|min(Q)−min(C)|

(14)

The Keogh lower bound (LB Keogh) (Keogh and Ratanamahatana, 2005) is arguably
one of the most used lower bound for DTW due to its simplicity and medium-high tightness.
First, it creates two envelopes encapsulating the candidate time series. The upper envelope
(UE) is built by finding the maximum within a warping window r range, and the lower
envelope (LE) is by finding the minimum, as shown in Equation 15.

UEi = max(ci−r : ci+r)
LEi = min(ci−r : ci+r)

(15)

Then LB Keogh distance of Q and C is the Euclidean distance of all points in Q that
are outside of the envelope to the envelopes UE and LE, as described in Equation 16.
Figure 16b illustrates LB Keogh, where the sum of the length of the green lines is the
LB Keogh distance.

LB Keogh(Q,C) =

√√√√√√ L∑
i=1


(qi − UEi)2 if qi > UEi

(qi − LEi)2 if qi < LEi

0 otherwise

(16)

There are more sophisticated lower bounds that are tighter than LB Keogh but has
higher computation overheads. The Improved lower bound (LB Improved) (Lemire, 2009)
performs LB Keogh in 2 passes. The first pass computes standard LB Keogh(Q,C) on the
query and the second pass computes LB Keogh(Q′, C) on the projection of the query Q′
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onto the envelopes. The New lower bound (LB New) (Shen et al., 2018) takes advantages
of the boundary and continuity conditions for DTW warping path to create a tighter lower
bound. The boundary condition requires that every warping path contains (q1, c1) and
(qL, cL). The continuity condition ensures that every qi is paired with at least one c′j , where

j ∈ {max(1, i − r) . . .min(L, i + r)}. The authors (Shen et al., 2018) sorts the points in c′j
and do a binary search if qi is within the maximum and minimum of c′j .

A.2 ERP lower bounds

DTW lower bounds can be adapted for the ERP distance by taking into account the ERP’s
penalty parameter g (Chen and Ng, 2004). Equation 17 describes LB Kim for ERP by
considering that the first and last point may be a gap, where q′1 = q1 or g, q′L = qL or g,
Q′max = max(Qmax, g), Q′min = min(Qmin, g). The same applies the candidate time series
C.

LB KimERP(Q,C) = max


|q′1 − c′1|
|q′L − c

′
L|

|Q′max − C′max|
|Q′min − C

′
min|

(17)

Similarly to compute LB Keogh for ERP (LB KeoghERP), the envelopes need to be
adjusted for g where the maximum and minimum values have to include the g parameter.
Equation 18 describes these new envelopes. Note that bandsize is used instead of r. Then
LB Keogh for ERP is computed exactly the same way as LB Keogh for DTW using
Equation 16 by substituting with the ERP envelopes.

UE′i = max(g,max(ci−bandsize : ci+bandsize))
LE′i = min(g,min(ci−bandsize : ci+bandsize))

(18)

All the previous lower bounds were developed specifically for DTW. Thus, the authors
(Chen and Ng, 2004) develop LB ERP, a new lower bound specifically for ERP. By setting
g = 0, LB ERP is defined in Equation 19 as the absolute difference of the sum of both time
series. The authors showed that LB ERP has better pruning power than LB KeoghERP.
Currently LB ERP is only defined for g = 0 and there are no further proofs for g 6= 0.
Therefore, we will only be using the LB Keogh version for ERP in our work.

LB ERP(Q,C) =
∣∣∣∑Q−

∑
C
∣∣∣ (19)

A.3 LCSS lower bound

The core of LCSS is based on the length of the longest common subsequence between two
time series. Then the distance is the percentage of points that are not a match – having
distance larger than ε. Recall that LCSS also uses a local constraint ∆, using similar idea as
LB Keogh by constructing an envelope around the candidate time series C, a lower bound
function for LCSS distance has been proposed in (Vlachos et al., 2003). The envelope for Q
is constructed using ε and ∆ as described in Equation 20.

UEi = max(ci−∆ : ci+∆) + ε
LEi = min(ci−∆ : ci+∆) + ε

(20)

The sum of all qi ∈ Q within the envelope creates an upper bound (UB) to the longest
common subsequence. Then the lower bound distance for LCSS (LB LCSS) is 1 − UB,
defined in Equation 21, as the percentage of points that are not within the envelope.

LB LCSS(Q,C) = 1−
1

L

L∑
i=1

{
1 if LEi ≤ qi ≤ UEi
0 otherwise

(21)
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